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What We Will Cover Today 
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• Epipolar Geometry, Essential Matrix (leftover from last lecture) 

 

• Probabilistic modelling of state estimation problems 

• Bayesian Filtering 

• Kalman Filter 

• Extended Kalman Filter 

• Particle Filter 
 

 

 

 

 



• Camera centers    ,    and image point              span the epipolar plane  
• The ray from camera center     through point      projects as the epipolar 

line      in image plane  
• The intersections of the line through the camera centers with the image 

planes are called epipoles    , 
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Epipolar Geometry 



• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The essential matrix                        captures the relative camera pose 

• Each point correspondence provides an „epipolar constraint“ 

• 5 correspondences suffice to determine      (simpler: 8-point algorithm) 
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Essential Matrix 



Probabilistic State Estimation 
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https://www.youtube.com/watch?v=ZMAISVy-6ao 

(Bloesch, Omari, Hutter, Siegwart, IROS 2015) 

https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao


Probabilistic State Estimation 
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• Hidden state X gives rise to noisy observations Y 

• At each time t,  

• the state changes stochastically from Xt-1 to Xt  

• state change depends on action Ut  

• we get a new observation Yt 
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Y0 Y1 
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Yt 
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U0 U1 Ut … 
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Recursive Bayesian Filtering 
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• Our goal: recursively estimate probability distribution of state Xt 
given all observations seen so far and previous estimate for Xt-1 

 

• We assume 

• Knowledge about probability distribution of observations 

 

 

• Knowledge about probabilistic dynamics of state transitions 

 

 

• Estimate of initial state  

 
 

 

 

 

 

 ttt UXXp :01:0 ,

 1:0:0:0 ,, tttt YUXYp

 0Xp



• Only the immediate past matters for a state transition 

 

 

 
 

• Observations depend only on the current state 
 

 

 

 

 

Markov Assumption 
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   tttttt UXXpUXXp ,, 1:01:0  

   tttttt XYpYUXYp 1:0:0:0 ,,

state transition model 

observation model 

X0 X1 

Y0 Y1 

Xt 

Yt 

… 

U0 U1 Ut … 

… 



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Initially it knows nothing about its location: uniform  

 
 

 

 

 

 

 0Xp

 0Xp

Image: Thrun, Burgard, Fox, 2005  



 

• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

 

 

• Observation of door increases the likelihood of x at doors 

 
 

 

 

 

 

The Door-Sensing Robot 
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 xXyYp  00

 yYxXp  00

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Robot moves: state is propagated, uncertainty increases 

 
 

 

 

 

 

 uUyYxXp  101 ,

u 

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

 

 

• Observation of door increases the likelihood of x at doors 

 
 

 

 

 

 

 xXyYp  11

 1:01:01:01:01 , uUyYxXp 

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Robot moves: state is propagated, uncertainty increases 

 
 

 

 

 

 

 2:02:01:01:02 , uUyYxXp 

u 

Image: Thrun, Burgard, Fox, 2005  



Bayes’ Theorem 
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𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝 𝐴  

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)
 

 

 
𝑝 𝐴, 𝐵|𝐶 = 𝑝 𝐴 𝐵, 𝐶 𝑝 𝐵|𝐶 = 𝑝 𝐵 𝐴, 𝐶 𝑝 𝐴|𝐶  

𝑝 𝐴 𝐵, 𝐶 =
𝑝 𝐵 𝐴, 𝐶 𝑝(𝐴|𝐶)

𝑝(𝐵|𝐶)
 

 

 
 

 

 

 

 



 

• How to obtain                                     from                                           ? 

 

 

 
 

 

 

 

 

   
 

   
 

   

    

















tttttt

ttttt

ttt

ttttt

ttt

ttttttt

dXuyXpXyp

uyXpXyp

uyyp

uyXpXyp

uyyp

uyXpuyXyp

:01:0

:01:0

:01:0

:01:0

:01:0

:01:0:01:0

,||

,||

,|

,||

,|

,|,,|

Recursive State Estimation 
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 1:01:01 ,  ttt uyXp ttt uyXp :0:0 ,

 ttt uyXp :0:0 ,

Marginalizing over Xt 

What does this term mean? 

Bayes’ theorem 

Markov assumption 



 

• How to obtain                                     ? 

 

• Intuition: If we knew                                      , the state transition 
model should tell us how to propagate the state estimate 

 

 
 

 

 

 

 

Recursive State Estimation 
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 ttt uyXp :01:0 ,

X0 X1 

Y0 Y1 

Xt 

Yt 

… Xt-1 

Yt-1 
… 

 1:01:01 ,  ttt uyXp

U0 U1 Ut Ut-1 
… 



 

• How to obtain                                     ? 

 

 

 
 

 

 

 

 

Recursive State Estimation 
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 ttt uyXp :01:0 ,
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 ttt uyXp :01:0 ,

Markov assumption 



 

• Prediction: 

 

 

 

 
 

• Correction: 

 
 

 

Prediction and Correction 
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      11:01:011:01:0 ,|,|,|   tttttttttt dXuyXpuXXpuyXp

state transition 
model 

corrected estimate 
from previous step 

 
   

    


tttttt

ttttt
tt

dXuyXpXyp

uyXpXyp
yyXp

:01:0

:01:0
0

,||

,||
,,| 

observation 
model 

predicted 
estimate 

 ttt uyXp :0:0 ,



 

• Prediction: 

 

 

 

 
 

 

• Correction: 

 
 

 

Predict-Correct Cycle 
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      11:01:011:01:0 ,|,|,|   tttttttttt dXuyXpuXXpuyXp
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Kalman Filter 
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• Kalman filters (KFs) instantiate recursive Bayesian filtering for a 
specific class of state transition and observation models 

 

• Linear state transition model with Gaussian noise: 

 

 

• Linear observation model with Gaussian noise: 

 

 

• Gaussian initial state estimate: 

 

 



Kalman Filter Prediction & Correction 
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• Efficient closed-form correction and prediction steps which 
involve manipulation of Gaussians 

• The state estimate can be represented as a Gaussian distribution 

 

 

• Prediction: 

 

 

• Correction: 

 

 

Kalman gain 



Kalman Filter 1D Example 
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• Let’s make a 1D example 

• Prediction: 

 

 

 

 

KF 
 

prediction 

old corrected belief 

predicted belief 

shifted mean 

scaled variance + noise 

Image: Thrun, Burgard, Fox, 2005  



Kalman Filter 1D Example 
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• Let’s make a 1D example 

• Correction: 

 

 

KF 
 

correction 

observation 
corrected belief 

weighted mean 

obs. noise determines update strength 

Image: Thrun, Burgard, Fox, 2005  



Kalman Filter Properties 
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• Highly efficient: Polynomial in measurement dimensionality k 
and state dimensionality n 

 

• Optimal solution for linear Gaussian systems! 

 

• In robotic vision, most models are non-linear! 

 

 



Gaussian Propagation for Linear Models 
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• Gaussians propagate exactly through a linear function 
Image: Thrun, Burgard, Fox, 2005  



Gaussian Propagation for Non-Linear Models 
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• Gaussian state can be coarse approximation in non-linear system 
Image: Thrun, Burgard, Fox, 2005  



Extended Kalman Filter (EKF) 
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• Non-linear state-transition model with Gaussian noise: 

 

 

• Non-linear observation model with Gaussian noise: 

 

 

• How to cope with non-linear system? 

 

• Idea: linearize the models in each time step 

 

 



EKF Linearization 
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• Gaussian propagation through non-linear function can introduce 
bias from best approximating Gaussian 

Image: Thrun, Burgard, Fox, 2005  



EKF Linearization 
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• The larger the uncertainty, the larger errors are introduced 

Image: Thrun, Burgard, Fox, 2005  



EKF Linearization 
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• Good approximation when propagated probability mass covers a 
local regime that is close to linear 

Image: Thrun, Burgard, Fox, 2005  



EKF Prediction & Correction 
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• Efficient approximate correction and prediction steps which 
involve manipulation of Gaussians and linearization 

• The state estimate can be represented as a Gaussian distribution 

 

 

• Prediction: 

 

 

• Correction: 

 

 
: 

: 



Extended Kalman Filter Properties 
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• Still highly efficient: Polynomial in measurement dimensionality k 
and state dimensionality n 

 

• No optimality guarantees! 

 

• Linearization can be problematic for highly non-linear models 
• Different variant: Unscented Kalman Filter (UKF) 

• Idea: propagate samples through non-linearity and recover a better 
Gaussian approximation (second-order approximation) 
• Does not require to explicitly calculate Jacobians 

 

 

 



What is a Particle Filter? 
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• Gaussians are restrictive for state and noise modelling 

• Idea:  
• Find a nonparametric implementation for probabilistic state 

estimation 

• Representation of state estimate by random samples 

 

 



What is a Particle Filter? 
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Image: Thrun, Burgard, Fox, 2005  



What is a Particle Filter? 
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(Choi and Christensen, IROS 2013) 

https://www.youtube.com/watch?v=ZwlX9CXs6fU&feature=emb_logo 

https://www.youtube.com/watch?v=ZwlX9CXs6fU&feature=emb_logo
https://www.youtube.com/watch?v=ZwlX9CXs6fU&feature=emb_logo


Importance Sampling Concept 
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• Using particles we are able to handle nonlinearities 
• We able to perform prediction (without considering process noise) 

𝑝(𝑋𝑡|𝑦0:𝑡−1) 

 

• How can we incorporate a new measurement 𝑦𝑡? 
• How do we get to 

𝑝 𝑋𝑡 𝑦0:𝑡  

 

• Weighting of particles respectively  importance sampling 



Importance Sampling Concept 
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• A key concept in particle filters is importance sampling 
• We would like to draw samples 

from a distribution f 

 

 

 

 

 

 

 
• However, we can only draw from 

a different distribution g 

• Weight samples of g by f(x)/g(x) 

 

 

 

Image: Thrun, Burgard, Fox, 2005  



Importance Sampling Concept 
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• Objective: Evaluate expectation of a function           w.r.t. a 
probability function  

• Use a proposal distribution          from which it is easy to draw 
samples and which is close in shape to  

• Approximate expectation by a finite sum over samples from  

𝔼𝑝 𝑓 𝑍 =  𝑓 𝑧 𝑝 𝑧 𝑑𝑧 =  𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 

≈
1

𝐿
 𝑓 𝑧𝑙

𝑝 𝑧𝑙

𝑞 𝑧𝑙

𝐿

𝑙=1

 

• With importance weights 

 

 Image: Bishop 2006 



The Door-Sensing Robot Resampled 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Initially it knows nothing about its location: uniform  

 
 

 

 

 

 

 0Xp

 0Xp

Image: Thrun, Burgard, Fox, 2005  



 

• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

 

 

• Observation of door increases the likelihood of x at doors 

 
 

 

 

 

 

The Door-Sensing Robot 
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 xXyYp  00

 yYxXp  00

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Robot moves: state is propagated, uncertainty increases 

• Samples are resampled and propagated 
 

 

 

 

 

 uUyYxXp  101 ,

u 

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

 

 

• Observation of door increases the likelihood of x at doors 
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 1:01:01:01:01 , uUyYxXp 

Image: Thrun, Burgard, Fox, 2005  



The Door-Sensing Robot 
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• Our robot wants to localize itself along the corridor 

• It can detect when it is in front of a door 

 

 

 

 

 

 

• Robot moves: state is propagated, uncertainty increases 

• Samples are resampled and propagated 
 

 

 

 

 

 2:02:01:01:02 , uUyYxXp 

u 

Image: Thrun, Burgard, Fox, 2005  



Particle Filter (PF) 
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• Non-linear observation and state-transition distributions 
𝑝(𝒚𝑡|𝒙𝑡) 𝑝(𝒙𝑡|𝒙𝑡−1, 𝒖𝑡) 

 

• State estimate is represented as a set of weighted samples 

𝒙𝑡
𝑖 , 𝑤𝑡
𝑖
𝑖=1

𝑁
 

 

 

𝑝 𝒙𝑡 𝒚0:𝑡, 𝒖1:𝑡 ≈ 𝑤𝑡
𝑖𝛿𝒙𝑡𝑖
(𝒙𝑡)

𝑁

𝑖=1

 

 

• The weighted samples a.k.a. particles are propagated and 
updated over time to approximate the posterior 𝑝 𝒙𝑡 𝒚0:𝑡, 𝒖1:𝑡  

 

 

 

State hypothesis Importance weight 



Sequential Importance Sampling (SIS) 
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• Draw samples from a proposal distribution 𝑞(𝐱𝑡|⋯ ) given 

• previous samples 𝐱𝑡−1
𝑖  

• potentialy measurement 𝐲𝑡 and action 𝐮𝑡 

• Update weights of particles 

 

• Sequential update: 

 

• Particle update: 

 

 

• Weight update: 

 

 



SIS Algorithm 
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• At each time step t: 

 

 

 



Choice of Proposal Distribution 
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• If we choose the state transition model as proposal distribution, 
we obtain prediction and correction steps 

 

• Prediction: 

 

 

• Correction: 

 

 

• There can be better choices for the proposal distribution which 
take the current observation into account! 

 

 

 

 

 



Sequential Importance Resampling (SIR) 
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• We propagate samples according to the proposal distribution 

 

• Since the proposal distribution mismatches  
the target distribution, samples with high  
accumulated weight can get sparse 

 

• Idea: resample the particles with replacement according to their 
weight (and reset to equal weights afterwards) 

 

• Choose when to resample according to effective sample size 

 

 



Particle Filter Properties 
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• Particle filters can handle arbitrary non-linear observation and 
state-transition distributions 

 

• Easy to implement and to parallelize 

 

• Caveat: curse of dimensionality. In the worst case, number of 
samples to approximate the state distribution grows 
exponentially with number of dimensions 

 

 

 

 



Lessons Learned Today 
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• State estimation can be modelled in a probabilistic framework 
• Simplification based on Markov assumption 
• Probabilistic state transition and observation models 

 
• Recursive Bayesian estimation of the state distribution 

• Kalman Filter for linear models with Gaussian noise + Gaussian 
state estimate 

• KF is efficient and optimal for the linear Gaussian case 
• Extended Kalman filter approximate inference for non-linear system 
• EKF has no optimality guarantees, quality depends on linear 

approximation 
• Particle filters can handle arbitrary non-linear systems and noise 

models 
• PFs can represent arbitrary state distributions 
• PFs are based on importance sampling 

 

 
 
 

 
 



Further Reading 
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• Probabilistic Robotics textbook 

 

 

 

 
Probabilistic Robotics,  
S. Thrun, W. Burgard, D. Fox,  
MIT Press, 2005 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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