

Computer Vision Group Prof. Daniel Cremers

Robotic 3D Vision

Lecture 3: Probabilistic State Estimation – Filtering

WS 2020/21 Dr. Niclas Zeller Artisense GmbH

What We Will Cover Today

- Epipolar Geometry, Essential Matrix (leftover from last lecture)
- Probabilistic modelling of state estimation problems
- Bayesian Filtering
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

Epipolar Geometry

- Camera centers ${f c}$, ${f c}'$ and image point ${f y}\in \Omega$ span the epipolar plane Π
- The ray from camera center c through point y projects as the epipolar line l' in image plane Ω'
- The intersections of the line through the camera centers with the image planes are called epipoles $e,\,e^\prime$

Essential Matrix

• The rays to the 3D point and the baseline \mathbf{t} are coplanar $\widetilde{\mathbf{y}}^{\top} (\mathbf{t} \times \mathbf{R} \widetilde{\mathbf{y}}') = 0 \Leftrightarrow \widetilde{\mathbf{y}}^{\top} \widehat{\mathbf{t}} \mathbf{R} \widetilde{\mathbf{y}}' = 0$

- The essential matrix $\, {f E} := \widehat{f t} {f R} \,$ captures the relative camera pose
- Each point correspondence provides an "epipolar constraint"
- 5 correspondences suffice to determine ${f E}$ (simpler: 8-point algorithm)

Probabilistic State Estimation

ROVIO: Robust Visual Inertial Odometry Using a Direct EKF-Based Approach

http://github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart

(Bloesch, Omari, Hutter, Siegwart, IROS 2015)

https://www.youtube.com/watch?v=ZMAISVy-6ao

Robotic 3D Vision

Probabilistic State Estimation

- Hidden state X gives rise to noisy observations Y
- At each time t,
 - the state changes stochastically from X_{t-1} to X_t
 - state change depends on action U_t
 - we get a new observation Y_t

Recursive Bayesian Filtering

- Our goal: recursively estimate probability distribution of state X_t given all observations seen so far and previous estimate for X_{t-1}
- We assume
 - Knowledge about probability distribution of observations

$$p(Y_t|X_{0:t}, U_{0:t}, Y_{0:t-1})$$

- Knowledge about probabilistic dynamics of state transitions $p(X_t | X_{0:t-1}, U_{0:t})$
- Estimate of initial state $p(X_0)$

Markov Assumption

• Only the immediate past matters for a state transition

$$p(X_t|X_{0:t-1}, U_{0:t}) = p(X_t|X_{t-1}, U_t)$$

state transition model

• Observations depend only on the current state

p

$$\begin{pmatrix} Y_t | X_{0:t}, U_{0:t}, Y_{0:t-1} \end{pmatrix} = p(Y_t | X_t)$$

$$\begin{array}{c} \bigcup_{0} & \bigcup_{1} & & \bigcup_{1} \\ X_0 & X_1 & & & X_t \\ \hline & & & & & X_t \\ \hline & & & & & & & Y_t \\ \hline & & & & & & & & Y_t \\ \end{array}$$

observation model

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform $p(X_0)$

Image: Thrun, Burgard, Fox, 2005

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Robot moves: state is propagated, uncertainty increases

Image: Thrun, Burgard, Fox, 2005

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

• Robot moves: state is propagated, uncertainty increases

Image: Thrun, Burgard, Fox, 2005

Bayes' Theorem

$$p(A,B) = p(A|B)p(B) = p(B|A)p(A)$$
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

$$p(A,B|C) = p(A|B,C)p(B|C) = p(B|A,C)p(A|C)$$
$$p(A|B,C) = \frac{p(B|A,C)p(A|C)}{p(B|C)}$$

Recursive State Estimation

• How to obtain
$$p(X_t|y_{0:t}, u_{0:t})$$
 from $p(X_{t-1}|y_{0:t-1}, u_{0:t-1})$?

$$\begin{split} p \Big(X_t \big| y_{0:t}, u_{0:t} \Big) \\ &= \frac{p \Big(y_t \mid X_t, y_{0:t-1}, u_{0:t} \Big) p \big(X_t \mid y_{0:t-1}, u_{0:t} \big)}{p \big(y_t \mid y_{0:t-1}, u_{0:t} \big)} & \text{Bayes' theorem} \\ \\ \text{Markov assumption} & p \Big(y_t \mid y_{0:t-1}, u_{0:t} \big) \\ &= \frac{p \Big(y_t \mid X_t \Big) p \big(X_t \mid y_{0:t-1}, u_{0:t} \big)}{p \big(y_t \mid y_{0:t-1}, u_{0:t} \big)} & \text{What does this term mean?} \\ &= \frac{p \Big(y_t \mid X_t \Big) p \big(X_t \mid y_{0:t-1}, u_{0:t} \big) \Big)}{\int p \big(y_t \mid X_t \big) p \big(X_t \mid y_{0:t-1}, u_{0:t} \big) dX_t} & \text{Marginalizing over } X_t \end{split}$$

Recursive State Estimation

- How to obtain $p(X_t|y_{0:t-1},u_{0:t})$?
- Intuition: If we knew $p(X_{t-1}|y_{0:t-1}, u_{0:t-1})$, the state transition model should tell us how to propagate the state estimate

Recursive State Estimation

• How to obtain
$$p(X_t|y_{0:t-1},u_{0:t})$$
 ?

$$p(X_{t}|y_{0:t-1}, u_{0:t})$$

$$= \int p(X_{t}, X_{t-1}|y_{0:t-1}, u_{0:t}) dX_{t-1}$$

$$= \int p(X_{t}|X_{t-1}, y_{0:t-1}, u_{0:t}) p(X_{t-1}|y_{0:t-1}, u_{0:t}) dX_{t-1}$$

$$= \int p(X_{t}|X_{t-1}, u_{t}) p(X_{t-1}|y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$

Markov assumption

Prediction and Correction

• Prediction:

$$p(X_{t} | y_{0:t-1}, u_{0:t}) = \int p(X_{t} | X_{t-1}, u_{t}) p(X_{t-1} | y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$

state transition corrected estimate
model from previous step
Correction: observation predicted
model estimate

$$p(X_t|y_{0:t}, u_{0:t}) = \frac{p(y_t|X_t)p(X_t|y_{0:t-1}, u_{0:t})}{\int p(y_t|X_t)p(X_t|y_{0:t-1}, u_{0:t})dX_t}$$

Predict-Correct Cycle

• Prediction:

$$p(X_{t} | y_{0:t-1}, u_{0:t}) = \int p(X_{t} | X_{t-1}, u_{t}) p(X_{t-1} | y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$

observation

 y_t

action \mathcal{U}_t

• Correction:

$$p(X_t|y_{0:t}, u_{0:t}) = \frac{p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})}{\int p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})dX_t}$$

Kalman Filter

- Kalman filters (KFs) instantiate recursive Bayesian filtering for a specific class of state transition and observation models
 - Linear state transition model with Gaussian noise:

$$\mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{d_t})$$

• Linear observation model with Gaussian noise:

$$\mathbf{z}_t = \mathbf{C}_t \mathbf{x}_t + oldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma}_{m_t})$$

• Gaussian initial state estimate: $\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$

Kalman Filter Prediction & Correction

- Efficient closed-form correction and prediction steps which involve manipulation of Gaussians
- The state estimate can be represented as a Gaussian distribution

$$\mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$$

• Prediction:
$$\mu_t^- = \mathbf{A}_t \mu_{t-1}^+ + \mathbf{B}_t \mathbf{u}_t$$

 $\Sigma_t^- = \mathbf{A}_t \Sigma_{t-1}^+ \mathbf{A}_t^\top + \Sigma_{d_t}$

• Correction: $\mathbf{K}_t = \mathbf{\Sigma}_t^- \mathbf{C}_t^\top \left(\mathbf{C}_t \mathbf{\Sigma}_t^- \mathbf{C}_t^\top + \mathbf{\Sigma}_{m_t} \right)^{-1}$ Kalman gain $\boldsymbol{\mu}_t^+ = \boldsymbol{\mu}_t^- + \mathbf{K}_t (\mathbf{y}_t - \mathbf{C}_t \boldsymbol{\mu}_t^-)$ $\mathbf{\Sigma}_t^+ = (\mathbf{I} - \mathbf{K}_t \mathbf{C}_t) \mathbf{\Sigma}_t^-$

Kalman Filter 1D Example

- Let's make a 1D example
- Prediction: $\mu_t^- = a_t \mu_{t-1}^+ + b_t u_t$ shifted mean

 $(\sigma_t^-)^2 = a_t^2 (\sigma_{t-1}^+)^2 + \sigma_{d_t}^2 \quad \text{scaled variance + noise}$

Kalman Filter 1D Example

Let's make a 1D example

• Correction: $k_{t} = \frac{c_{t}(\sigma_{t}^{-})^{2}}{c_{t}^{2}(\sigma_{t}^{-})^{2} + \sigma_{m_{t}}^{2}} \qquad \text{weighted mean}$ $\mu_{t}^{+} = \mu_{t}^{-} + k_{t}(y_{t} - c_{t}\mu_{t}^{-}) = \frac{\sigma_{m_{t}}^{2}\mu_{t}^{-} + c_{t}^{2}(\sigma_{t}^{-})^{2}y_{t}}{\sigma_{m_{t}}^{2} + c_{t}^{2}(\sigma_{t}^{-})^{2}}$ $(\sigma_{t}^{+})^{2} = (\sigma_{t}^{-})^{2} - k_{t}c_{t}(\sigma_{t}^{-})^{2} = \frac{\sigma_{m_{t}}^{2}(\sigma_{t}^{-})^{2}}{\sigma_{m_{t}}^{2} + c_{t}^{2}(\sigma_{t}^{-})^{2}}$

obs. noise determines update strength

Image: Thrun, Burgard, Fox, 2005

Kalman Filter Properties

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n
- Optimal solution for linear Gaussian systems!
- In robotic vision, most models are non-linear!

Gaussian Propagation for Linear Models

Gaussians propagate exactly through a linear function

Gaussian Propagation for Non-Linear Models

Gaussian state can be coarse approximation in non-linear system

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

Extended Kalman Filter (EKF)

• Non-linear state-transition model with Gaussian noise:

$$\mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{u}_t) + \boldsymbol{\epsilon}_t \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{d_t})$$

- Non-linear observation model with Gaussian noise: $\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\delta}_t$ $\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{m_t})$
- How to cope with non-linear system?
- Idea: linearize the models in each time step

$$\implies \mathbf{x}_t \approx g(\mathbf{x}_{t-1}^0, \mathbf{u}_t) + \nabla g(\mathbf{x}, \mathbf{u}_t)|_{\mathbf{x} = \mathbf{x}_{t-1}^0} \left(\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^0 \right) + \boldsymbol{\epsilon}_t$$

EKF Linearization

 Gaussian propagation through non-linear function can introduce bias from best approximating Gaussian

Robotic 3D Vision

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

EKF Linearization

• The larger the uncertainty, the larger errors are introduced

EKF Linearization

 Good approximation when propagated probability mass covers a local regime that is close to linear

EKF Prediction & Correction

- Efficient approximate correction and prediction steps which involve manipulation of Gaussians and linearization
- The state estimate can be represented as a Gaussian distribution

$$\mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$$

• Prediction:
$$\boldsymbol{\mu}_t^- = g(\boldsymbol{\mu}_{t-1}^+, \mathbf{u}_t)$$

 $\boldsymbol{\Sigma}_t^- = \mathbf{G}_t \boldsymbol{\Sigma}_{t-1}^+ \mathbf{G}_t^\top + \boldsymbol{\Sigma}_{d_t}$ $\mathbf{G}_t \coloneqq \nabla g(\mathbf{x}, \mathbf{u}_t)|_{\mathbf{x} = \boldsymbol{\mu}_{t-1}^+}$

• Correction: $\mathbf{K}_t = \mathbf{\Sigma}_t^- \mathbf{H}_t^\top \left(\mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^\top + \mathbf{\Sigma}_{m_t} \right)^{-1}$ $\boldsymbol{\mu}_t^+ = \boldsymbol{\mu}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - h(\boldsymbol{\mu}_t^-) \right) \qquad \mathbf{H}_t := \nabla h(\mathbf{x})|_{\mathbf{x} = \boldsymbol{\mu}_t^-}$ $\mathbf{\Sigma}_t^+ = \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{\Sigma}_t^-$

Extended Kalman Filter Properties

- Still highly efficient: Polynomial in measurement dimensionality k and state dimensionality n
- No optimality guarantees!
- Linearization can be problematic for highly non-linear models
 - Different variant: Unscented Kalman Filter (UKF)
 - Idea: propagate samples through non-linearity and recover a better Gaussian approximation (second-order approximation)
 - Does not require to explicitly calculate Jacobians

What is a Particle Filter?

- Gaussians are restrictive for state and noise modelling
- Idea:
 - Find a nonparametric implementation for probabilistic state estimation
 - Representation of state estimate by random samples

What is a Particle Filter?

Image: Thrun, Burgard, Fox, 2005

What is a Particle Filter?

(Choi and Christensen, IROS 2013)

https://www.youtube.com/watch?v=ZwIX9CXs6fU&feature=emb_logo

Importance Sampling Concept

- Using particles we are able to handle nonlinearities
 - We able to perform prediction (without considering process noise) $p(X_t|y_{0:t-1})$
- How can we incorporate a new measurement y_t ?
 - How do we get to

 $p(X_t|y_{0:t})$

• Weighting of particles respectively \rightarrow importance sampling

Importance Sampling Concept

- A key concept in particle filters is importance sampling
 - We would like to draw samples from a distribution f

- However, we can only draw from a different distribution g
- Weight samples of g by f(x)/g(x)

Image: Thrun, Burgard, Fox, 2005

Importance Sampling Concept

- Objective: Evaluate expectation of a function $f(\mathbf{z})$ w.r.t. a probability function $p(\mathbf{z})$
- Use a proposal distribution q(z) from which it is easy to draw samples and which is close in shape to p(z)
- Approximate expectation by a finite sum over samples from $q(\mathbf{z})$

$$\mathbb{E}_{p}\{f(Z)\} = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz$$

$$\approx \frac{1}{L}\sum_{l=1}^{L} f(z^{l})\frac{p(z^{l})}{q(z^{l})} \xrightarrow{p(z)} q(z) \xrightarrow{q(z)} f(z)$$
With importance weights
$$w_{l} = \frac{p(\mathbf{z}^{l})}{q(\mathbf{z}^{l})} \xrightarrow{q(z)} q(z) \xrightarrow{q(z)} q(z)$$

Image: Bishop 2006 Dr. Niclas Zeller, Artisense GmbH

The Door-Sensing Robot Resampled

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform $p(X_0)$

Image: Thrun, Burgard, Fox, 2005

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

- Robot moves: state is propagated, uncertainty increases
- Samples are resampled and propagated

Image: Thrun, Burgard, Fox, 2005

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

Image: Thrun, Burgard, Fox, 2005 Dr. Niclas Zeller, Artisense GmbH

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

- Robot moves: state is propagated, uncertainty increases
- Samples are resampled and propagated

Particle Filter (PF)

- Non-linear observation and state-transition distributions $p(y_t|x_t) = p(x_t|x_{t-1}, u_t)$
- State estimate is represented as a set of weighted samples

• The weighted samples a.k.a. particles are propagated and updated over time to approximate the posterior $p(\mathbf{x}_t | \mathbf{y}_{0:t}, \mathbf{u}_{1:t})$

Sequential Importance Sampling (SIS)

- Draw samples from a proposal distribution $q(\mathbf{x}_t | \dots)$ given
 - previous samples \mathbf{x}_{t-1}^i
 - potentialy measurement \mathbf{y}_t and action \mathbf{u}_t
- Update weights of particles
- Sequential update:

• Particle update:
$$\mathbf{x}_t^i \sim q(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{y}_t, \mathbf{u}_t)$$

• Weight update:
$$w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i, \mathbf{u}_t)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t, \mathbf{u}_t)}$$

SIS Algorithm

• At each time step t:

$$\begin{split} \eta &= 0 \\ \text{for } i &= 1:N \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}, \mathbf{u}_{t}) \\ & w_{t}^{i} = w_{t-1}^{i} \frac{p(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} \mid \mathbf{x}_{t-1}^{i}, \mathbf{u}_{t})}{q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}, \mathbf{u}_{t})} \\ & \eta &= \eta + w_{t}^{i} \\ \text{end} \\ \text{for } i &= 1:N \\ & w_{t}^{i} = w_{t}^{i}/\eta \\ \text{end} \\ \text{end} \end{split}$$

Choice of Proposal Distribution

- If we choose the state transition model as proposal distribution, we obtain prediction and correction steps
- Prediction: $\mathbf{x}_t^i \sim p(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{u}_t)$

• Correction:
$$w_t^i = w_{t-1}^i p(\mathbf{y}_t \mid \mathbf{x}_t^i)$$

• There can be better choices for the proposal distribution which take the current observation into account!

weight (and reset to equal weights afterwards)

• Choose when to resample according to effective sample size

Idea: resample the particles with replacement according to their

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} (w_t^i)^2}$$

$\sum_{i=1}^{N} (w_t^i)^2$

- **Sequential Importance Resampling (SIR)**
- We propagate samples according to the proposal distribution
- Since the proposal distribution mismatches the target distribution, samples with high accumulated weight can get sparse

Particle Filter Properties

- Particle filters can handle arbitrary non-linear observation and state-transition distributions
- Easy to implement and to parallelize
- Caveat: curse of dimensionality. In the worst case, number of samples to approximate the state distribution grows exponentially with number of dimensions

Lessons Learned Today

- State estimation can be modelled in a probabilistic framework
 - Simplification based on Markov assumption
 - Probabilistic state transition and observation models
- Recursive Bayesian estimation of the state distribution
 - Kalman Filter for linear models with Gaussian noise + Gaussian state estimate
 - KF is efficient and optimal for the linear Gaussian case
 - Extended Kalman filter approximate inference for non-linear system
 - EKF has no optimality guarantees, quality depends on linear approximation
 - Particle filters can handle arbitrary non-linear systems and noise models
 - PFs can represent arbitrary state distributions
 - PFs are based on importance sampling

Further Reading

• Probabilistic Robotics textbook

Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox, MIT Press, 2005 Thanks for your attention!

Slides Information

- These slides have been initially created by Jörg Stückler as part of the lecture "Robotic 3D Vision" in winter term 2017/18 at Technical University of Munich.
- The slides have been revised by myself (Niclas Zeller) for the same lecture held in winter term 2020/21
- Acknowledgement of all people that contributed images or video material has been tried (please kindly inform me if such an acknowledgement is missing so it can be added).