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What We Will Cover Today 
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• Lie algebra se(3) 

• Introduction to and definition of visual odometry 

• Indirect vs. direct methods 

• Indirect methods 

• 2D-to-2D motion estimation 

 
 

 

 

 

 



Recap: Geometric Point Primitives 
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2D 3D 

 

• Point 

 
  

 

• Augmented 
vector 

 
  

• Homogeneous 
coordinates 



Recap: (Special) Euclidean 
Transformations 
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• (Special) Euclidean transformations apply rotation 
                                      and translation 
 
 
 
 

• Rigid-body motion: preserves distances and angles when 
applied to points on a body 

 

 

 



Recap: Special Orthogonal Group SO(n) 
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• Rotation matrices have a special structure 
 
 
 
 
 

• They form a group which we denote as Special Orthogonal Group               
• The group operator is matrix multiplication 

• associative, but not commutative! 

• Inverse and neutral element exist 

 
• 2D rotations only have 1 degree of freedom (DoF), i.e. angle of 

rotation 
 

• 3D rotations have 3 DoFs, several parametrizations exist such as Euler 
angles and quaternions 

 

 
 



Recap: Special Euclidean Group SE(n) 
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• (Special) Euclidean transformation matrices have a special 
structure as well: 

 

 

• Translation      has 3 degrees of freedom 

• Rotation                         has 3 degrees of freedom 

• In total 6 degrees of freedom 

 

• They also form a group which we denote as Special Euclidean 
Group             . The group operator is matrix multiplication: 

 

 

 



•             is a Lie group, i.e. a smooth manifold with compatible operator, 

inverse and neutral element 

• Its Lie algebra            provides an elegant way to parametrize poses for 

optimization 

• Its elements                  form the tangent space of         at  at identity  

• The           elements can be interpreted as rotational and translational 

velocities (twists)  

 

 Robotic 3D Vision 

Lie algebra 

Lie group log 

exp 

Representing Motion using Lie Algebra se(3) 
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• Let‘s look at rotations first and assume time-continuous motion 
• We know that 𝐑 𝑡 𝐑T 𝑡 = 𝐈 

 
• Taking the derivative with respect to time 𝑡 yields 

𝐑 𝑡 𝐑T 𝑡 + 𝐑 𝑡 𝐑 T 𝑡 = 𝟎 
 

𝐑 𝑡 𝐑T 𝑡 = −𝐑 𝑡 𝐑 T 𝑡  
 

• This means there exists a skew-symmetric matrix 𝝎 𝑡 = −𝝎 T 𝑡  
such that 

𝐑 𝑡 = 𝝎 𝑡 𝐑 𝑡  
 

• Assuming 𝝎  to be constant and 𝐑 0 = 𝐈 one obtains 
𝐑 𝑡 = exp(𝝎 𝑡) 

 
𝐑 𝑡 + 𝛿𝑡 ≈ 𝐑 𝑡 + 𝛿𝑡𝝎 𝐑 𝑡 = (𝐈 + 𝛿𝑡𝝎 )𝐑 𝑡  

 
• 𝝎 𝑡 corresponds to axis-angle representation 
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Insights into se(3) 
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𝝎 𝑡 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
 



• For continuous rigid-body motion we can write 

 

 

 

• For constant           the differential equation has a unique solution: 

 
 

 

• For initial condition                  , we have 

 

• To reduce clutter in notation, we will absorb    into     and 

Robotic 3D Vision 

Further Insights into se(3) 
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• The exponential map finds transformation matrices for twists: 

 

 

 

• Closed form of the exponential map 

 

 

 

 

 

 

 

 

 

Robotic 3D Vision 

Lie group 

Lie algebra 

log 

exp 

Exponential Map of SE(3) 
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Lie group 

Lie algebra 

• The logarithm map finds twists for transformation matrices: 
 

 

 

 

 

 

 

 

 

 

 

log 

exp 

Logarithm Map of SE(3) 
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Robotic 3D Vision 

• Let’s define the following notation: 

 

• Inv. of hat operator: 

 

 

• Conversion:                                             , 

 

• Pose inversion: 

 

• Pose concatenation: 

 

• Pose difference: 

 

 

 

 

 

 

 

 

 

 

 

Some Notation for Twist Coordinates 
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Robotic 3D Vision 

 camera matrix 

world coordinates 
image pixel coordinates 
focal length 
camera center 

(normalized image coordinates) 
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Recap: Pinhole Camera Model 
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Recap: Camera Extrinsics 
 

 

 

 

 

 

 

 

 

• (Special) Euclidean transformations (                       ) between 
camera view poses and world frame 

• Directed graph tells us how to concatenate poses 

 
 

 

 

 

 

 



 

 

 

 

 

 

• Normalized image coordinates: 

 

 

• Pixel coordinates: 
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Warping Function 



Recap: What is Visual Odometry? 
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Visual odometry (VO)…  

• … is a variant of tracking 

• Track the current pose, i.e. position and orientation, of the 
camera with respect to the environment from its images 

• Only considers a limited set of recent images for real-time 
constraints 

 

 

• … involves a data association problem 

• Motion is estimated from corresponding  
interest points or pixels in images, or by  
correspondences towards a local 3D  
reconstruction 

 

 

 

 

 

 



Recap: What is Visual Odometry? 
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Visual odometry (VO)…  

• … is prone to drift due to its 
local view 
 

 

 

• … is primarily concerned 
with estimating camera 
motion 

• 3D reconstruction often a 
“side product”. If estimated, 
it is only locally consistent 

 

 

 

 

 

 



Visual Odometry Example 
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https://www.youtube.com/watch?v=2YnIMfw6bJY 

(Forster, Pizzoli, Scaramuzza, ICRA 2014) 

https://www.youtube.com/watch?v=2YnIMfw6bJY
https://www.youtube.com/watch?v=2YnIMfw6bJY


Visual Odometry Example 
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https://www.youtube.com/watch?v=C6-xwSOOdqQ 
(Engel, Koltun, Cremers, T-PAMI 2018) 

https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ


Notion of Visual Odometry 
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• Odometry:  

• Greek: „hodos“ – path, „metron“ – measurement 

• Motion or position estimation from 
measurements or controls 

• Typical example: wheel encoders  

 

 

• Visual Odometry: 

• 1980-2004: Prominent research by NASA Jet 
Propulsion Laboratory (JPL) for Mars exploration 
rovers (Spirit and Opportunity)  

• David Nister‘s „Visual Odometry“ paper from 2004 
about keypoint-based methods for monocular and 
stereo cameras 

 
Image source: NASA, [Cheng et al., RAM, 2006] 



Why Visual Odometry? 
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• VO is often used to complement other sensors 
• Inertial Measurement Units (IMUs) 
• Wheel odometry 
• GPS 
• etc. 

 
• VO typically is more accurate than wheel odometry and not prone to wheel 

slippage 

 
• VO is important in GPS-denied environments (indoors, close to buildings, 

etc.) 
 

• Cameras are cheep compared to other sensors 
• LiDAR 
• INS (Inertial Navigation System) 
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Why Visual Odometry? 

https://www.youtube.com/watch?v=GMVLSvnJwQA 

https://www.youtube.com/watch?v=GMVLSvnJwQA
https://www.youtube.com/watch?v=GMVLSvnJwQA
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Why Visual Odometry? 

https://www.youtube.com/watch?v=PBAmpYwAY3g 

https://www.youtube.com/watch?v=PBAmpYwAY3g
https://www.youtube.com/watch?v=PBAmpYwAY3g


Sensors for Visual Odometry 
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• Monocular cameras 
• Pros: Low-power, light-weight, low-cost, simple to calibrate 

and use, no synchronization required 

• Cons: requires motion parallax and texture, scale not 
observable 
 

• Stereo cameras 
• Pros: depth without motion, less power than active 

structured light 

• Cons: requires texture, accuracy depends on stereo baseline, 
synchronization and extrinsic calibration of the cameras 
 

• Active RGB-D sensors 
• Pros: no texture needed (geometric alignment), similar to 

stereo processing 

• Cons: active sensing consumes power, can be disturbed by 
other light sources 
accuracy depends on baseline between IR-projector and IR-
camera, extrinsic calibration between projector and cameras 

 
Image source: IDS, PointGrey, ASUS 



Definition of Visual Odometry 
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• Visual odometry is the process of estimating the egomotion of an 
object (robot) using visual inputs from cameras on the object (robot) 
 

• Inputs: images at discrete time steps    , 
 

• Monocular case: Set of images 
• Stereo case: Left/right images                                      ,    / 
• RGB-D case: Color/depth images                                      /                                , 

 
• Output: Transformation estimate                        of camera frame to world 

frame  
 

• Camera pose integrated up from relative pose estimates 
• Example: camera pose                                        from (key-)frame-to- (key-) 

frame transformations 
 



Recap: Indirect vs. Direct Methods 
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Indirect Direct 

Input images Input images 

Track: min. reprojection 
error (point distances) 

Map: estimate keypoint 
parameters (f.e. 3D 
coordinates) 

Track: min. photometric/ 
geometric error pixel-wise 

Map: estimate per-pixel 
depth from 
photoconsistency 

Extract and match 
keypoints (SIFT,BRIEF,…) 



Indirect vs. Direct VO Methods 
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• Direct visual odometry methods formulate alignment objective in terms 
of pixel-wise error (e.g. photometric or geometric error) 

• Two-view case with known depth: 

𝐸(𝝃) = 𝐼1 𝐲𝑖 − 𝐼2 𝜔 𝐲𝑖 , 𝝃, 𝑍1(𝐲𝑖) 𝛾
𝑖

 

 

• Indirect visual odometry methods formulate alignment objective in 
terms of reprojection error of geometric primitives (e.g. points, lines) 

• Two-view case with known depth: 

𝐸(𝝃) = 𝐲2,𝑖 −𝜔 𝐲1,𝑖 , 𝝃, 𝑍1(𝐲1,𝑖) 𝛾
𝑖

 

•           : sets of primitives (e.g. keypoints) in image 1 and 2    

 

 
 



Indirect Visual Odometry Example 
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LibVISO2, Geiger et al., StereoScan: Dense 3D Reconstruction in Real-time, IV 2011 

https://www.youtube.co
m/watch?v=EPTJz7w_Aq
U&feature=emb_logo 

https://www.youtube.com/watch?v=EPTJz7w_AqU&feature=emb_logo
https://www.youtube.com/watch?v=EPTJz7w_AqU&feature=emb_logo
https://www.youtube.com/watch?v=EPTJz7w_AqU&feature=emb_logo
https://www.youtube.com/watch?v=EPTJz7w_AqU&feature=emb_logo


Indirect Visual Odometry Pipeline 
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• Keypoint detection and  
local description 

 

• Robust keypoint  
matching 

 

• Motion estimation 
• 2D-to-2D: motion from  

image correspondences  

• 2D-to-3D: motion from  
image to local 3D 
correspondences 

• 3D-to-3D: motion from  
local 3D 
correspondences  
(f.e. stereo, RGB-D) 

 
 

Images from Jakob Engel 



2D-to-2D Motion Estimation 

• Given corresponding image point observations 
 
 
 
of unknown 3D points 
(expressed in camera frame at time t) 
determine relative motion             between frames  

 

• Naive try: minimize reprojection error using least squares 

 

 

 

• Convexity? Uniqueness (scale-ambiguity)?  
  

• Alternative algebraic approach 
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Recap: Essential Matrix 

• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The essential matrix                        captures the relative camera pose 

• Each point correspondence provides an „epipolar constraint“ 

• 5 correspondences suffice to determine      (simpler: 8-point algorithm) 

 
Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 31 



Fundamental Matrix 

• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The fundamental matrix                                      captures the relative 
camera pose and camera intrinsics 

• Each point correspondence provides an „epipolar constraint“ 

• Can be estimated from at least 7 point correspondences  
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Some Properties of E and F 

•                       is a fundamental matrix iff 

 

•                       is an essential matrix iff                              and its 
non-zero singular values are equal  

 

•                       is a normalized esssential matrix iff                        
and its non-zero singular values are 1 

 

 

 

• (Normalized) essential space: set of all (normalized) essential 
matrices 
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Eight-Point Algorithm 

• First proposed by Longuet and Higgins, Nature 1981 

• Algorithm: 

1. Rewrite epipolar constraints as a linear system of equations 
 
 
using Kronecker product                         and 
  

2. Apply singular value decomposition (SVD) on                             and 
unstack the 9th column of         into 
  

3. Project the approximate      into the (normalized) essential space:  
  

Determine the SVD of                                                   with 
  

and replace the singular values                            with               to find 
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Eight-Point Algorithm cont. 

• Algorithm (cont.):  

• Determine one of the following 4 possible solutions that 
intersects the points in front of both cameras: 
 
 

 

 

• A derivation of the eight-point algorithm can be found in the 
„An Invitation to 3-D Vision“ textbook, Ch. 5 

• Algebraic solution does not minimize reprojection error 

• Refine using non-linear least-squares of reprojection error 
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Error Metric of the Eight-Point Algorithm 

• What is the physical meaning of the error minimized by the 
eight-point algorithm? 

• The eight-point algorithm finds E that minimizes  
 
 
subject to                        through the SVD on 𝐀 

• We find a least squares fit to the epipolar constraints 

• Each epipolar constraint measures the volume spanned by 𝐲, 𝐭, 
and 𝐑𝐲‘ 
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Notes on Eight-Point Algorithm 

• Points need to be in „general position“ to recover unique E: 
certain degenerate configurations exists (f.e. points on a plane, 
specific quadratic surfaces) 

 

• No translation, ideally: 

 

• But: for small translations, signal-to-noise ratio of image 
parallax may be problematic: „spurious“ pose estimate  

 

• Non-linear 5-point algorithm with up to 10 (possibly complex) 
solutions (D. Nister, An Efficient Solution to the Five-Point 
Relative Pose Problem, CVPR 2004) 
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Normalized Eight-Point Algorithm 

• Hartley, In Defense of the 8-Point Algorithm, IEEE PAMI 1997 

•      can be numerically ill-conditioned when estimating the 
fundamental matrix with the eight-point algorithm naively 

 

 

 

 

 

• Noise attenuates stronger in large pixel coordinates (quadratic 
dependency)  

• Least squares (SVD) more sensitive to noise in large coordinates 

• „Imbalanced“ since pixel coordinates start at (0,0) 
 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 38 



Normalized Eight-Point Algorithm 

• Popular approach: Normalize coordinates to zero mean and 
standard deviation         in each image separately 

 

 

 

 

• Find       and        to normalize pixel coordinates 
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𝑝 

𝑝 𝑝 

𝑝 

𝑝 



Normalized Eight-Point Algorithm 

• Apply eight-point algorithm on normalized coordinates with 
epipolar constraints 

 

 

 

• Recover       from  
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𝑝 𝑝 



Eight-Point Algorithm for F 

• Calibrated case: we know camera intrinsics, we can estimate E 

• Uncalibrated case: we do not know camera intrinsics, we can 
only estimate F 

 

• In the uncalibrated case, rotation and translation can not be 
recovered from F due to the unknown camera intrinsics 
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Further Reading 
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• MASKS and MVG textbooks 

 
 

 

 

 

 

An Invitation to 3D 
Vision,  
Y. Ma, S. Soatto, J. 
Kosecka, and S. S. 
Sastry,  
Springer, 2004 
 

Multiple View 
Geometry in 
Computer Vision,  
R. Hartley and A. 
Zisserman, 
Cambridge 
University Press, 
2004 
 MVG 

 
MASKS 
 



Lessons Learned Today 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 43 

• Visual odometry is the process of estimating ego-motion using 
onboard visual sensors 

• Indirect methods extract and match geometric primitives such as 
keypoints 

• Direct methods directly operate on the pixel level 

• Motion estimation from 2D-to-2D image correspondences 

• (Normalized) eight-point algorithm for estimating the essential and 
fundamental matrix 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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