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What We Will Cover Today 
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• Indirect visual odometry methods 

• 2D-to-2D motion estimation 

 

• 2D-to-3D motion estimation 

 

• 3D-to-3D motion estimation 

 

• Properties of keypoint detection and matching 

 

• Estimation uncertainty 
 

 

 

 

 



Recap: Special Euclidean Group SE(n) 
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• Euclidean transformation matrices have a special structure: 
 

 

 

• Translation      has 3 degrees of freedom 

• Rotation                         has 3 degrees of freedom 

 

• They also form a group which we denote as Special Euclidean 
Group             . The group operator is matrix multiplication: 

 

 

 



•             is a Lie group, i.e. a smooth manifold with compatible operator, 

inverse and neutral element 

• Its Lie algebra            provides an elegant way to parametrize poses for 

optimization 

• Its elements                  form the tangent space of         at  at identity  

• The           elements can be interpreted as rotational and translational 

velocities (twists)  
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Recap: Representing Motion using Lie Algebra 
se(3) 
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Robotic 3D Vision 

• Let’s define the following notation: 

 

• Inv. of hat operator: 

 

 

• Conversion:                                             , 

 

• Pose inversion: 

 

• Pose concatenation: 

 

• Pose difference: 

 

 

 

 

 

 

 

 

 

 

 

Recap: Some Notation for Twist Coordinates 
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2D-to-2D Motion Estimation 

• Given corresponding image point observations 
 
 
 
of unknown 3D points 
(expressed in camera frame at time t) 
determine relative motion             between frames  

 

• Naive try: minimize reprojection error using least squares 

 

 

 

• Convexity? Uniqueness (scale-ambiguity)?  
  

• Alternative algebraic approach 
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Recap: Essential Matrix 

• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The essential matrix                        captures the relative camera pose 

• Each point correspondence provides an „epipolar constraint“ 

• 5 correspondences suffice to determine      (simpler: 8-point algorithm) 
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Recap: Fundamental Matrix 

• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The fundamental matrix                                      captures the relative 
camera pose and camera intrinsics 

• Each point correspondence provides an „epipolar constraint“ 

• Can be estimated from at least 7 point correspondences  
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Some Properties of E and F 

•                       is a fundamental matrix iff 

 

•                       is an essential matrix iff                              and its 
non-zero singular values are equal  

 

•                       is a normalized esssential matrix iff                        
and its non-zero singular values are 1 

 

 

 

• (Normalized) essential space: set of all (normalized) essential 
matrices 
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Eight-Point Algorithm 

• First proposed by Longuet and Higgins, Nature 1981 

• Algorithm: 

1. Rewrite epipolar constraints as a linear system of equations 
 
 
using Kronecker product                         and 
  

2. Apply singular value decomposition (SVD) on                             and 
unstack the 9th column of         into 
  

3. Project the approximate      into the (normalized) essential space:  
  

Determine the SVD of                                                   with 
  

and replace the singular values                            with               to find 
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Eight-Point Algorithm cont. 

• Algorithm (cont.):  

• Determine one of the following 4 possible solutions that 
intersects the points in front of both cameras: 
 
 

 

 

• A derivation of the eight-point algorithm can be found in the 
„An Invitation to 3-D Vision“ textbook, Ch. 5 

• Algebraic solution does not minimize reprojection error 

• Refine using non-linear least-squares of reprojection error 
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Error Metric of the Eight-Point Algorithm 

• What is the physical meaning of the error minimized by the 
eight-point algorithm? 

• The eight-point algorithm finds E that minimizes  
 
 
subject to                        through the SVD on 𝐀 

• We find a least squares fit to the epipolar constraints 

• Each epipolar constraint measures the volume spanned by 𝐲, 𝐭, 
and 𝐑𝐲‘ 
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Notes on Eight-Point Algorithm 

• Points need to be in „general position“ to recover unique E: 
certain degenerate configurations exists (f.e. points on a plane, 
specific quadratic surfaces) 

 

• No translation, ideally: 

 

• But: for small translations, signal-to-noise ratio of image 
parallax may be problematic: „spurious“ pose estimate  

 

• Non-linear 5-point algorithm with up to 10 (possibly complex) 
solutions (D. Nister, An Efficient Solution to the Five-Point 
Relative Pose Problem, CVPR 2004) 
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Normalized Eight-Point Algorithm 

• Hartley, In Defense of the 8-Point Algorithm, IEEE PAMI 1997 

•      can be numerically ill-conditioned when estimating the 
fundamental matrix with the eight-point algorithm naively 

 

 

 

 

 

• Noise attenuates stronger in large pixel coordinates (quadratic 
dependency)  

• Least squares (SVD) more sensitive to noise in large coordinates 

• „Imbalanced“ since pixel coordinates start at (0,0) 
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Normalized Eight-Point Algorithm 

• Popular approach: Normalize coordinates to zero mean and 
standard deviation         in each image separately 

 

 

 

 

• Find       and        to normalize pixel coordinates 
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Normalized Eight-Point Algorithm 

• Apply eight-point algorithm on normalized coordinates with 
epipolar constraints 

 

 

 

• Recover       from  
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Eight-Point Algorithm for F 

• Calibrated case: we know camera intrinsics, we can estimate E 

• Uncalibrated case: we do not know camera intrinsics, we can 
only estimate F 

 

• In the uncalibrated case, rotation and translation can not be 
recovered from F due to the unknown camera intrinsics 
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Triangulation 
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• Goal: Reconstruct 3D point 𝐱 = 𝑥, 𝑦, 𝑧, 1 T from 2D image observations {𝐲1, 𝐲2} for known camera 
poses 𝐓1, 𝐓2  
• Can be extendend to multiple images, as long as scale is known (or scale needs to be estimated) 
• In general we assume 𝐓1 = 𝐈 

 
• Linear solution: Find 3D point such that reprojections equal its projections 

𝐲𝑖
′ = 𝜋 𝐓𝑖𝐱 =

𝑟11𝑥 + 𝑟12𝑦 + 𝑟13𝑧 + 𝑡𝑥
𝑟31𝑥 + 𝑟32𝑦 + 𝑟33𝑧 + 𝑡𝑧

𝑟21𝑥 + 𝑟22𝑦 + 𝑟23𝑧 + 𝑡𝑦

𝑟31𝑥 + 𝑟32𝑦 + 𝑟33𝑧 + 𝑡𝑧

 

 
• Each image provides one constraint  𝐲𝑖 = 𝜋 𝐓𝑖𝐱   𝐲𝑖 = 𝑥𝑖 , 𝑦𝑖

T 

([𝐓𝑖]1 − 𝑥𝑖[𝐓𝑖]3) ⋅ 𝐱 = 0 
([𝐓𝑖]2 − 𝑦𝑖[𝐓𝑖]3) ⋅ 𝐱 = 0 

 
([𝐑𝑖]1 − 𝑥𝑖[𝐑𝑖]3) ⋅ 𝐱 = −(𝑡𝑥 − 𝑥𝑖𝑡𝑧) 
([𝐑𝑖]2 − 𝑦𝑖[𝐑𝑖]3) ⋅ 𝐱 = −(𝑡𝑦 − 𝑦𝑖𝑡𝑧) 

 
• Non-linear solution: Minimize least squares reprojection error (more accurate) 

Triangulation 
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Relative Scale Recovery 
• Problem: each subsequent frame-pair gives another solution for the 

reconstruction scale  
 

• Approach:  
• Triangulate corresponding image points                                  for current 

and last frame pair using the last and current recovered pose estimates 
and find their 3D positions 
 
 
 

• Rescale translation of current relative pose estimate to match the 
reconstruction scale with the distance ratio between corresponding 3D 
point pairs 
 
 
 

• Use mean or robust median over available pair ratios 
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Algorithm: 2D-to-2D Visual Odometry 

Input: image sequence        , camera calibration  

Output: aggregated camera poses 

 

Algorithm: 

For each current image      : 

1. Extract and match keypoints between         and 

2. Compute relative pose           from essential matrix  
between      ,  

3. Fine-tune pose estimate by minimizing reprojection error 

4. Compute relative scale and rescale translation of 

5. Aggregate camera pose by 

 
Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 21 



2D-to-3D Motion Estimation 
• Given a local set of 3D points 

and corresponding image observations 
 
 
determine camera pose              
within the local map 

• Minimize least squares geometric reprojection error 
 
 
 
• A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, f.e. 

• Direct linear transform (DLT) 
• EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 

2009) 
• OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and 

Optimal Solution, ICCV 2013) 
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• Goal: determine projection matrix  

 

• Each 2D-to-3D point correspondence 
3D:                                                   2D: 
gives two constraints 
 
 
 
through 

 

• Form linear system of equations               with 
from             correspondences 

 

• Solve for    : determine unit singular vector of     corresponding to its 
smallest singular value 

Direct Linear Transform for PnP 
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Algorithm: 2D-to-3D Visual Odometry 

Input: image sequence         , camera calibration 

Output: aggregated camera poses 

Algorithm: 

Initialize: 

1. Extract and match keypoints between      and  

2. Determine camera pose (essential matrix) and  
triangulate 3D keypoints 

For each new image      : 

1. Extract and match keypoints between          and  

2. Compute camera pose        using PnP from 2D-to-3D matches  

3. Triangulate all new keypoint matches between          and        
and add them to the local map 
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3D-to-3D Motion Estimation 

• Given corresponding 3D points  
in two camera frames 
 
 
 
determine relative camera pose 

 

• Idea: determine rigid transformation that aligns the 3D points 

 

• Geometric least squares error: 

 

• Closed-form solutions available, f.e. Arun et al., 1987 

• Applicable e.g. to RGB-D cameras or also Lidar 
• Should only be used if we have very accurate depth 
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3D Rigid-Body Motion from 3D-to-3D 
Matches 

• Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 
1987 

• Corresponding 3D points, 
                                        

 
• Determine means of 3D point sets  

 
 
 

• Determine rotation from 
 
 
 

• Determine translation as 
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• 2D-to-2D 
• Reprojection error: 

 
 
  

 
• Linear algorithm: 8-point 

 
• 2D-to-3D 

• Reprojection error: 
 

• Linear algorithm: DLT PnP 
 

• 3D-to-3D 
• 3D geometric error: 

 
• Linear algorithm: Arun‘s method 

 
• Allways consider the error distribution (least squares is only optimal for Normal 

distribution) 

Motion Estimation from Point Correspondences 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 27 



Further Considerations 

• How to detect keypoints? 
  

• How to match keypoints? 
  

• How to cope with outliers in keypoint matches?  

  

• When to create new 3D keypoints ? Which keypoints to use? 
  

• 2D-to-2D, 2D-to-3D or 3D-to-3D? 
  

• Optimize over more than two frames? 
  

• … 
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Keypoint Detection 
• Desirable properties of keypoint detectors for visual odometry: 

• High repeatability 

• Localization accuracy  

• Robustness 

• Invariance  

• Computational efficiency 

  

 

Robotic 3D Vision 

Image source: Svetlana Lazebnik 

Harris Corners DoG (SIFT) Blobs 
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Keypoint Detection 
• Corners 

• Image locations with locally 
prominent intensity variation 

 

• Examples: Harris, FAST 

 

Robotic 3D Vision 

• Blobs 

• Image regions that stick out from their 
surrounding in intensity/texture 

 

• Examples: LoG, DoG (SIFT), SURF 
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Keypoint Detection 
• Invariance for view-point changes 

• Translation 

• Rotation 

• Scale 

• Perspective 
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Image source: Svetlana Lazebnik 

DoG (SIFT) Blobs 



Keypoint Detection 
• Corners vs. blobs for visual odometry: 

• Typically corners provide higher spatial localization accuracy, 
but are less well localized in scale 

• Corners are typically detected in less distinctive local image 
regions 

• Highly run-time efficient corner detectors exist (f.e. FAST) 
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Image source: Svetlana Lazebnik 

Harris Corners DoG (SIFT) Blobs 
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Keypoint Matching 

• Desirable properties for VO: 

• High recall 

• Precision 

• Robustness  

• Computational efficiency 
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Keypoint Matching 

• Data association principles: 
• Matching by reprojection error / distance to epipolar line:  

assumes an initial guess for camera motion (f.e. Kalman filter prediction, 
IMU, or wheel odometry) 

• Detect-then-track (f.e. KLT-tracker):   
Correspondence search by local image alignment, assumes incremental 
small (but unknown) motion between images 

• Matching by descriptor:  
scale-/viewpoint-invariant local descriptors 

• Robustness through outlier rejection (f.e. RANSAC) for motion estimation 
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Local Feature Descriptors 
• Desirable properties for VO: distinctiveness, robustness, invariance  

 

• Extract signatures that describe local image regions, examples: 
• Histograms over image gradients (SIFT) 

• Histograms over Haar-wavelet responses (SURF) 

• Binary patterns (BRIEF, BRISK, FREAK, etc.) 

• Learned descriptors (SuperPoint, etc.) 

 

• Rotation-invariance: Align with dominant orientation in local region 

 

• Scale-invariance: Extract descriptor from different scales 
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• Given a non-linear function in a Gaussian variable 

 

• Apply first-order Taylor approximation  

 

 

• Note: Linear transformation                          of Gaussian variable 
remains Gaussian: 

 

• Gaussian approximation of the non-linearly transformed 
variable 

 

Uncertainty Propagation 
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Disparity and Depth 

Robotic 3D Vision 

• Let‘s consider a simple case when camera planes are parallel and focal 
lengths are equal 
• Disparity 𝑑 is inversely proportional to depth 𝑧: The larger the depth, 

the smaller the disparity 
• Disparity 𝑑 is proportional to baseline 𝑏: The larger the baseline, the 

larger the disparity 

Similar triangles: 
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Uncertainty of Depth Estimates 

• Given Gaussian uncertainty in the 

disparity 𝜎𝑑
2 

 

• Inverse depth 𝑧−1 will also be 
Gaussian 

𝑧−1 =
𝑑

𝑏𝑓
 

𝜎𝑧−1
2 =

1

𝑏𝑓 2
𝜎𝑑

2 

• Uncertainty in depth 𝑧 can be 
approximate by a Gaussian with 

𝜎𝑧
2 =

𝜕𝑧

𝜕𝑑

2
𝜎𝑑

2 =
𝑏𝑓 2

𝑑4 𝜎𝑑
2 

=
𝑧4

𝑏𝑓 2
𝜎𝑑

2 

Robotic 3D Vision 

baseline << depth baseline ~ depth 
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Drift in Motion Estimates 

• Since we aggregate pose  
estimates from relative pose  
estimates, estimation errors in  
relative poses accumulate: Drift 

  

• Noisy observations of  
2D image point location  

  

• How does uncertainty in  
motion estimate 
depend on observation noise? 
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baseline << depth baseline ~ depth 
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Keyframes 
• Popular approach to reduce drift:  

Keyframes 

 

• Carefully select reference  
images for motion estimation /  
triangulation 

 

• Incrementally estimate motion  
towards keyframe 

 

• If baseline sufficient (and/or  
image overlap small), create  
next keyframe (and for instance 
triangulate 3D positions of keypoints) 
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Keyframes 
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• Model image point observation likelihood 
 
f.e. Gaussian:  

  

 

• Optimize maximum a-posteriori likelihood  
of estimates 
 
 
 
  

Neg. log-likelihood: 
  

 

 

 

Uncertainty in Pose Estimates 
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• Gaussian prior and observation likelihood: 

 

 

 

• We use Gauss-Newton to find 

 

 

• 𝐖 models inverse covariances of observations and priors 

• The inverse Hessian of the Gauss-Newton approximation  
 
 
yields an approximate covariance of the estimates 

 

 

 

Uncertainty in Pose Estimates 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 42 



Further Reading 
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• MASKS and MVG textbooks 

 

 

 

 

 

 

 

 
 

 

 

 

 

An Invitation to 3D 
Vision,  
Y. Ma, S. Soatto, J. 
Kosecka, and S. S. 
Sastry,  
Springer, 2004 
 

Multiple View 
Geometry in 
Computer Vision,  
R. Hartley and A. 
Zisserman, 
Cambridge 
University Press, 
2004 
 MVG 

 
MASKS 
 



Lessons Learned Today 
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• Motion estimation from point correspondences 

• 2D-to-2D correspondences, eight-point algorithm 

• 2D-to-3D correspondences, DLT algorithm for PnP 

• 3D-to-3D correspondences, Arun’s method 

 

• Properties for keypoint detection and matching 

 

• Uncertainty in structure and motion estimation depends on 
observation noise 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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