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What We Will Cover Today 
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• RANSAC (leftover from last lecture) 
 

• Direct visual odometry methods 
• Principles of direct image alignment 
• Photometric alignment 
• Geometric alignment 

 
• Direct visual odometry for RGB-D cameras 

 
• Direct visual odometry for monocular cameras 

• Semi-dense monocular odometry 

 
• Photometric calibration 
•   
• Stereo extensions 
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Recap: Keypoint Matching 

• Only accept matches with distance smaller a threshold 

• What else can we do? 
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Random Sample Consensus (RANSAC) 

• Model fitting in presence of noise and outliers 

• Example: fitting a line through 2D points 
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• Least-squares solution, assuming constant noise for all points 

 

 

 

 

 

 

RANSAC 
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Bad! 
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• We only need 2 points to fit a line. Let’s try 2 random points 

 

 

 

 

 

 

RANSAC 
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Quite ok 
 
7 inliers 
4 outliers 
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• Let’s try 2 other random points 

 

 

 

 

 

 

RANSAC 
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Quite bad 
 
3 inliers 
8 outliers 
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• Let’s try yet another 2 random points 

 

 

 

 

 

 

RANSAC 
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Quite good! 
 
9 inliers 
2 outliers 
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• Let’s use the inliers of the best trial so far to perform least 
squares fitting 

 

 

 

 

 

 

RANSAC 
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Even better! 
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• How many iteration do we need to find the optimal solution 

• 𝑝  - probability of finding the correct solution 

• ϵ  - outlier ration  𝑤 = 1 − ϵ (inlier ratio) 

• 𝑠  - number of data points required to calculate solution 

• 𝑁 - number of iterations 

 
1 − 𝑝 = 1 − 𝑤𝑠 𝑁 = 1 − 1 − ϵ 𝑠 𝑁 

 

 

𝑁 ≥
log(1 − 𝑝)

log 1 − 1 − ϵ 𝑠
 

 

RANSAC 
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Probability of not a 
single correct solution Probability of picking 

𝑠 inliers 

Probability of picking at least one outlier 



• RANdom SAmple Consensus algorithm formalizes this idea 

• Algorithm: 
Input: data 𝐷, 𝑠 required #data points for fitting, success probability 𝑝, outlier 
ratio ϵ 

Output: inlier set 

1. Compute required number of iterations 𝑁 ≥
log(1−𝑝)

log 1− 1−ϵ 𝑠
 

 

2. For 𝑁 iterations do: 

1. Randomly select a subset of 𝑠 data points 

2. Fit model on the subset 

3. Count inliers and keep model/subset with largest number of inliers 

 

3. Refit model using found inlier set  

 

 

 

 

 

 

 

RANSAC Algorithm 
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RANSAC 

Robotic 3D Vision 

Required points 
 

Outlier ratio  

10% 20% 30% 40% 50% 60% 70% 

Line 2 3 5 7 11 17 27 49 

Plane 3 4 7 11 19 35 70 169 

Essential matrix 8 9 26 78 272 1177 7025 70188 

for 
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Direct Visual Odometry Pipeline 

• Avoid manually designed  
keypoint detection 
and matching 
 

• Instead: direct image  
alignment 
 

𝐸(𝝃) =  𝐼1 𝐲 − 𝐼2 𝜔 𝐲, 𝝃 𝑑𝐲
𝐲∈Ω

 

 

𝐸(𝝃) = 𝐼1 𝐲𝑖 − 𝐼2 𝜔 𝐲𝑖 , 𝝃

𝑖

 

 
 
• Warping requires depth 

• RGB-D 
• Fixed-baseline stereo 
• Temporal stereo, tracking  

and (local) mapping 
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Direct Visual Odometry Example (RGB-D) 
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(Kerl, Sturm, Cremers, ICRA 2013) 

https://www.youtube.com/watch?v=TMqPwoCCmto 

https://www.youtube.com/watch?v=TMqPwoCCmto
https://www.youtube.com/watch?v=TMqPwoCCmto


Direct Image Alignment Principle 

• If we know pixel depth, we can synthesize an image from a different view point 

 

• Idealy, the intensities of the synthesized warped image are the same as from the real 
one 
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Derivative of Image Warp 

Images from Kerl et al., ICRA 2013 
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𝐼1 𝐼2 

𝐼1 − 𝐼2  𝜕𝐼2
𝜕𝑣𝑥

 
(derivative of image intensity 
with respect to linear motion in 𝑥) 



Direct RGB-D Image Alignment 

• RGB-D cameras measure depth, we only need to estimate camera motion! 

• In addition to the photometric error 
 
 
we can measure geometric error directly 
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• Measurements are affected by noise 

  

 

• A convenient assumption is Gaussian noise 

 

 

• If we further assume that noise of pixel intensities is stochastically independent 
accross the image, we can formulate the a-posteriori probability 

 

 

 

 

 

 

 

 

Probabilistic Direct Image Alignment 
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• Optimize negative log-likelihood  

 Product of exponentials becomes a summation over quadratic terms 

 Normalizers are independent of the pose 

 We ignore the pose prior 𝑝(𝝃) 
 
 
          , stacked residuals: 

 

 

 

• Non-linear least squares problem can be efficiently optimized using standard 
optimization tools (Gauss-Newton, Levenberg-Marquardt) 

 

 

 

Optimization Approach 
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Recap: Gauss-Newton Method 
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• Approximate Newton’s method to minimize E(x) 
• Approximate E(x) through linearization of residuals 

 
 
 
 
 
 
 

 
• Find root of                                                          using Newton’s method, i.e. 
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𝐱𝑘+1 = 𝐱𝑘 − 𝐇𝑘
−1𝐛𝑘 



Recap: Levenberg-Marquardt Method 

21 

• Gradually transition between gradient descent and Gauss-Newton 
• Augment Hessian approximation of Gauss-Newton (damping) 

 
 

 
• Adaptive weighting: 

 
• Start with  
• Accept step and decrease lambda                    if error function decreases, 

otherwise discard step and increase lambda                  (akin line search) 
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• Requirements on pose parametrization  

 No singularities  

 Minimal to avoid constraints 

 

• Various pose parametrizations available 

 Direct matrix representation => not minimal 

 Quaternion / translation => not minimal 

 Euler angles / translation => singularities (gimbal lock) 

 Twist coordinates of elements in Lie Algebra se(3) of SE(3) 
(axis-angle / translation) 

 

 

Pose Parametrization for Optimization 
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•                is a smooth manifold, i.e. a Lie group 

• Its Lie algebra              provides an elegant way to parametrize poses for 
optimization 

• Its elements                       form the tangent space of           at  at identity  

• The               elements can be interpreted as rotational and translational 
velocities (twists)  

 

 

Recap: Representing Motion using Lie Algebra 
se(3) 

Lie algebra 

Lie group log 

exp 
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Optimization with Twist Coordinates 

• Twists provide a minimal local representation without singularities  

 

• We can decompose transformations in each optimization step into the 
transformation itself and an infinitesimal increment 

 

𝐓 𝝃 = exp(𝜹𝝃 )𝐓 𝝃 = 𝐓 𝜹𝝃  ⨁  𝝃 𝐓 𝜹𝝃 + 𝝃 ≠ 𝐓 𝜹𝝃 𝐓 𝝃  

 

• We perform optimization with respect to auxiliary variable 𝛿𝝃 

• Example: Gradient descent on the auxiliary variable 

𝜹𝝃∗ = −𝜂𝛻𝜹𝝃𝐸 𝝃𝑘 , 𝜹𝝃  

  
𝐓 𝝃𝑘+1 = exp 𝜹𝝃

∗ 𝐓 𝝃𝑘   

• Similar for Gauss-Newton: calculate Jacobian of 𝐫(𝝃𝑘 , 𝜹𝝃) with respect to 𝜹𝝃 

• Make sure the increment is applied from the correct side 

 

 

 

 

 

 

 

 

But! 
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Properties of Residual Linearization 

𝑟 𝐲, 𝝃 = 𝐼1 𝑦 − 𝐼2 𝜔 𝐲, 𝝃  with 𝜔 𝐲, 𝝃 ≔ 𝜋(𝐓 𝝃 𝑍1(𝐲)𝐲 ) 
 

• Gradient of residuals w.r.t. pose 
 

∇𝝃𝑟 𝐲, 𝝃 = −∇𝜔𝐼2 𝜔 𝐲, 𝝃  ∇𝝃𝜔 𝐲, 𝝃  

 
• Linearization is only valid for motions that change the projection in a small 

image neighborhood that is captured by the local gradient 
• 𝐸(𝝃) is far from being a convex function (many local minima) 
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𝐼1 − 𝐼2  

𝜕𝐼2
𝜕𝑣𝑥

 



 

 

Coarse-To-Fine Optimization 

coarse motion 

fine motion 
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• Important: smooth image during downscaling 
• E.g. average over four neighboring pixels 



 

 

Residual Distributions 

• Gaussian noise assumption on photometric residuals oversimplifies 

• Outliers (occlusions, motion, etc.): 

• Residuals are distributed with more mass on the larger values 

 

 

 

- Normal distribution 
- Laplace distribution 
- Student-t distribution 

 

r 

p
(r

) 

Images from Kerl et al., ICRA 2013 
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Optimizing Non-Gaussian Measurement Noise 

• Can we change the residual distribution in least squares optimization? 

• For specific types of distributions: yes! 

• Iteratively reweighted least squares: Reweight residuals in each iteration 

 

𝐸 𝝃 =  𝑤 𝑟 𝐲, 𝝃
𝑟 𝐲, 𝝃 2

𝜎𝐼
𝟐

𝐲∈Ω

𝑤 𝑟 𝐲, 𝝃 = 𝑟 𝐲, 𝝃 −1
 

 

 

- Normal distribution 
- Laplace distribution 
- Student-t distribution 

 

r 

w
(r

)r
² 

Laplace distribution: 
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Huber Loss 

• Huber-loss „switches“ between Gaussian (locally at mean) and 
Laplace distribution 

𝑟 𝛿 =  
0.5𝑟2 for 𝑟 ≤ 𝛿

𝛿 𝑟 − 0.5𝛿 otherwise
 

 

 

Huber-loss for      = 1 

- Normal distribution 
- Laplace distribution 
- Student-t distribution 
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• Gauss-Newton / Levenberg-Marquardt can be applied very 
efficiently to direct image alignment: 
 𝐇𝑘   is only a 6x6 matrix 

 

 𝐛𝑘 = 𝐉𝑘
T𝐖𝐫(𝝃𝑖)   is a 6x1 vector 

 

 Since we treat each pixel stochastically independent from neighboring 
pixels, 𝐇𝑘 and 𝐛𝑘 are summed over individual pixels 

 

𝐇𝑘 =  
𝑤(𝐲, 𝝃𝑘)

𝜎𝐼
2

𝐲∈Ω

𝐉𝑘,𝐲
T 𝐉𝑘,𝐲 𝐛𝑘 =  

𝑤 𝐲, 𝝃𝑘

𝜎𝐼
2

𝐲∈Ω

𝐉𝑘,𝐲
T 𝑟(𝐲, 𝝃𝑘) 

𝐉𝑘,𝐲 ≔ 𝛻𝜹𝝃𝑟(𝐲, 𝜹𝝃  ⨁  𝝃𝑘) 

 

 

 

 

 

 This allows for highly efficient parallel processing, e.g. using a GPU 

 

 

 

 

 

 

 

 

 

Efficient Non-Linear Least Squares 
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Algorithm: Direct RGB-D Visual Odometry 

Input: RGB-D image sequence  

Output: aggregated camera poses 

 

Algorithm: 

For each current RGB-D image            : 

1. Estimate relative camera motion      by towards the previous 
RGB-D frame using direct image alignment 

2. Concatenate estimated camera motion with previous frame 
camera pose to obtain current camera pose estimate  
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Monocular Direct Visual Odometry 

• Estimate motion and depth concurrently 

 

 

 

 

 

 

 

 

• Alternating optimization: Tracking and Mapping 

Images from: Engel et al., ICCV 2013 

32 Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 



 

 

Semi-Dense Mapping 

• Estimate inverse depth and variance at high gradient pixels 

• Correspondence search along epipolar line (5-pixel intensity SSD) 

 

 

 

 

 

 

• Kalman-filtering of depth map: 

• Propagate depth map & variance from previous frame 

• Update depth map & variance with new depth observations 
Images from: Engel et al., ICCV 2013 
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Semi-Dense Mapping 
• Estimate for inverse depth uncertainty from geometric and intensity noise 

• Very simplified model, but works quite well in reality 

 

 

 

 

 

 

 

 

 

 

Geometric noise 

Images from: Engel et al., ICCV 2013 

gradient 
direction 

epipolar line  
direction 

pos. variance of  
epipolar line  
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𝜆 is the estimated disparity 
approx. proportionaly to 
inverse depth 



 

 

Semi-Dense Mapping 

• Estimate for inverse depth uncertainty from geometric and intensity noise 

 

 

 

 

 

 

 

 

 

 

Intensity noise 

Images from: Engel et al., ICCV 2013 

intensity noise 
variance 

image gradient 
magnitude at  
epipolar line 
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Paper: 
https://openaccess.thecvf.com/content_iccv_201
3/papers/Engel_Semi-
dense_Visual_Odometry_2013_ICCV_paper.pdf 

https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf
https://openaccess.thecvf.com/content_iccv_2013/papers/Engel_Semi-dense_Visual_Odometry_2013_ICCV_paper.pdf


 

 

Choosing the Stereo Reference Frame 

• Naive: use one 
specific reference 
frame (f.e. the 
previous frame or a 
keyframe) 

 

• We can also select 
the reference frame 
for stereo 
comparisons for each 
pixel individually in 
order to achieve a 
trade-off between 
accuracy and 
computation time 

 

 

 

 

 

 

 

 

 

 

Images from: Engel et al., ICCV 2013 

Heuristics from Engel et al., ICCV 2013: 
Use oldest frame in which pixel still visible but disparity 
search range and observation angle below threshold 
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Semi-Dense Direct Image Alignment 

Images from: Engel et al., ICCV 2013 

warped 

residuals 
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Algorithm: Direct Monocular Visual Odometry 

Input: Monocular image sequence  
Output: aggregated camera poses 
 
Algorithm: 
Initialize depth map       

• E.g. from first two frames with a point-based method 

For each current image     : 
1. Estimate relative camera motion           towards the previous image 

with estimated semi-dense depth map          using direct image 
alignment 

2. Concatenate estimated camera motion with previous frame camera 
pose to obtain current camera pose estimate 

3. Propagate semi-dense depth map          from previous frame to 
current frame to obtain 

4. Update propagated semi-dense depth map       with temporal stereo 
depth measurements to obtain 
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Direct Visual Odometry Example (Mono) 
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(Engel, Sturm, Cremers, ICCV 2013) 

https://www.youtube.com/watch?v=LZChzEcLNzI 

https://www.youtube.com/watch?v=LZChzEcLNzI
https://www.youtube.com/watch?v=LZChzEcLNzI


Direct Image Alignment Revisited 

• If we know pixel depth, we can „simulate“ an image from a different view point 

 

• Ideally, the warped image is the same as the image taken from that pose: 

 

 

 

• What do we mean with „ideally“ ? 
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• The objects in the scene radiate light which is focused by 
the lens onto the image sensor 

 

• The pixels of the sensor observe an irradiance              
for an exposure time  

 

• The camera electronics translates the  
accumulated irradiance into intensity  
values according to a non-linear camera  
response function   

 

• The measured intensity is 

 

 
 

 

 

 

 

 

Recap: Camera Response Function 
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example inv. 
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• Lenses gradually focus more light at 
the center of the image than at the 
image borders 

• The image appears darker towards 
the borders  

• Also called “lens attenuation” 

• Lens vignetting can be modelled as 
a map 

 

• Intensity measurement model  

 

 

 

 

 
 

 

 

 

 

 

Recap: Vignetting 
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corrected 

uncorrected 
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Brightness Constancy Assumption Revisited 
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• Camera images include vignetting effects and non-linear camera 
response function  

 

• Idea: invert vignetting and camera response function using a 
known calibration 

 

• Perform direct image alignment on irradiance images: 
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Brightness Constancy Assumption Revisited 
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• Automatic exposure adjustment needed in realistic environments 

• Add exposure parameters explicitly to objective function:  
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Image: Engel et al. PAMI 2018 
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How does the robot move? 

https://www.youtube.com/watch?v=C6-xwSOOdqQ 

(Engel, Koltun, Cremers, T-PAMI 2018) 

Direct Sparse Visual Odometry (Mono) 

https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ


 

 

Direct Mapping with Stereo Cameras 

• For stereo cameras, we can exploit the known camera extrinsics 
to estimate depth from static stereo (left-right images) in addition 
to temporal stereo (successive left or right images) 
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no information from static 

stereo 
no information from temporal stereo 
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Image from: Engel et al. IROS 2015 



Direct Sparse Visual Odometry (Stereo) 
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(Wang, Schwörer, Cremers, ICCV 2017) 

https://www.youtube.com/watch?v=A53vJO8eygw 

https://www.youtube.com/watch?v=A53vJO8eygw
https://www.youtube.com/watch?v=A53vJO8eygw


Deep Direct Sparse VO (Mono) 
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(Yang, Wang, Stückler, Cremers, ECCV 2018) 

https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s 

https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s
https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s


 

 

Lessons Learned Today 
• Direct image alignment avoids manually designed keypoints and can 

use all available image information 
• Direct visual odometry 

• Dense RGB-D odometry by direct image alignment with measured 
depth 

• Direct image alignment for monocular cameras requires depth 
estimation from temporal stereo 

• Stereo cameras: Direct depth estimation using static and temporal 
stereo 

• Direct image alignment as non-linear least squares problem 
• Linearization of the residuals requires a coarse-to-fine optimization 

scheme 
• SE(3) Lie algebra provides an elegant way of motion representation for 

gradient-based optimization 
• Iteratively reweighted least squares allows for wider set of residual 

distributions than Gaussians 

• Photometric calibration and exposure parameter estimation 

49 Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 



50 

 

 

 

 

Thanks for your attention! 
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• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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