
Iuliia Skobleva

Parallel Tracking and Mapping
for Small AR Workspaces

The Evolution of Motion Estimation and Real-time 3D Reconstruction

1

Main Idea

estimate camera’s position in an unknown setting

tracking camera motion producing a 3D map

2

Previous Methods

• MonoSLAM and Scalable Monocular SLAM were state-of-the-art

• Mostly used for robots where it receives odometery and can be driven slowly

• Data-association becomes a problem when tracking a hand-held camera

• Neither provided enough robustness for AR applications

‣ Separate Tracking and Mapping
‣ No need for processing every frame when mapping

3

4

Timeline

1968

1992

29th June 2007

13th Nov 2007

2016

Now

5

Algorithm

6

Algorithm Overview

1. The map is densely initialised from a stereo pair
2. New points are initialised with an epipolar search
3. Mapping is based on keyframes, which are processed using batch techniques

the scene must be mostly static
the scene must be mostly small

7

Notation

• The map contains N keyframes

• Each keyframe stores a four-level pyramid of greyscale
images

• The map consists of M point features in the world
coordinate frame

• Each point feature represents a patch

Before we get started

8

Tracking

9

Tracking
Initial Steps

10

1. Tracking system constructs a four-level image pyramid
2. FAST corner detector is run on each pyramid level

Tracking
Projection of Map Points

1. A new frame is acquired from the camera, and a prior pose estimate is generated from a motion model

2. Map points are projected onto the image according to the frame’s prior pose estimate

piC = ECWpiW ECW = exp(̂μ)

(ui
vi) = CamProj(ECWpiW)

CamProj

x
y
z
1

= (u0
v0) +

r′

r (fu 0
0 fv)

x
z
y
z

r =
x2 + y2

z2
r′ =

1
w

arctan(2r tan
w
2

)

11

Tracking
Projection of Map Points

12

CamProj

CamProj

CamProj

Tracking

3. A small number (50) of the coarsest-scale features are searched for in the image

• Take viewpoint changes into the account by warping the patch around the predicted location of a point

• Mean pixel intensity is subtracted to increase robustness against lightning changes

Feature Search

13

Tracking

3. A small number (50) of the coarsest-scale features are searched for in the image

• Take viewpoint changes into the account by warping the patch around the predicted location of a point

• Mean pixel intensity is subtracted to increase robustness against lightning changes

• Use SSD scores at FAST corner locations to find a match for the patch

Feature Search

14

Tracking

4. Camera pose is updated from these coarse matches

 is the found patch position

 is the Tukey objective bi-weight function

 is a robust (median-based) estimate of the distribution’s standard deviation derived from all the residuals

(̂ui ̂vi)

Obj(⋅ , σT)

σT

Pose Update

μ′ = argmin∑
i∈S

Obj (|ei |
σi

, σT)
ei = (̂ui

̂vi) − CamProj(exp(μ)ECW pi)

15

Tracking

5. A large number of points (1000) is re-projected and searched for in the image
6. A final pose estimate for the frame is computed from all matches found

Search & Pose Update for more Points

16

Mapping

17

Building a Map

• User takes pic #1

• User rotates and translates the camera

• User takes pic #2

• 1000 points are searched for using FAST corners

• Using 5-point algorithm

• To scale the map, assume the camera has moved 10cm

Initialisation

18

Building a Map

New keyframes are added when:

• Tracking quality is good (fraction of successful feature observations)

• 0.67 seconds have passed since taking the last keyframe

• Camera must be away a certain distance from nearest keypoint in the map
‣ Distance depends on average depth of the observed features

Keyframes

19

Building a Map

• Use FAST corners, which have already been calculated
by the tracking system

• Use Shi-Tomasi scores to narrow down the set

• Select “new” points (discard salient points near successful
observations of existing features)

• Acquire depth information using triangulation with the
nearest keyframe

• In case of a successful match (point exists in two frames),
add the point to the map

Epipolar search

20

Building a Map

• Use Levenberg-Marquardt Bundle Adjustment algorithm to refine the map for all keyframes:

• Perform local Bundle Adjustment to decrease computation time:

 is the set of keyframes which are being adjusted (newest frame + four nearest ones)

 is the set of all 3D points visible in

 is the further set of keyframes with projections of points from

X

Z X

Y Z

Bundle Adjustment

{{μ1 . . . μN}, {p′ 1 . . . p′ M}} = argmin
N

∑
i=1

∑
j∈Si

Obj (
|eji |

σji
, σT)

{{μx∈X}, {p′ z∈Z}} = argmin
N

∑
i∈X∪Y

∑
j∈Z∩Si

Obj (i, j)

21

{μ}, {p}

{μ}, {p}

Building a Map

• Performed when bundle adjustment has converged

• Make new measurements in old keyframes

• Re-measure outliers (frequently happens in regions with repeated patterns)

Data Association Refinement

22

Results

23

Results

24

Results

Keyframe Preparation: frame capture, converting image
to greyscale, building the image pyramid and FAST
corner detection

Feature Projection: projection of map points onto image
and selection of the most salient points

Tracking Performance

Task Time
Keyframe Preparation 2.2ms

Feature Projection 3.5ms

Patch Search 9.8ms

Iterative Pose Update 3.7ms

Total 19.2ms

25

Results

• Tracking scales linearly with increasing map size

• Mapping scales poorly with increasing number of map points and keyframes

• System remains stable under 6000 map points and 150 keyframes

Scalability

2-49
keyframes

50-99
keyframes

100-149
keyframes

Local Bundle
Adjustment 170ms 270ms 440ms

Global Bundle
Adjustment 380ms 1.7s 6.9s

26

Overview

• Could only be run on a computer and not on mobile platforms

• Requires user interaction

• The map bears no geometrical meaning

• Not possible to interact with features in the images

• Limited to small spaces

• Cannot handle loop closure

Problems & Future Work

27

 Thanks ☺

28

Extra Slides

29

FOV Model

30

tan
ω
2

=
1

2D

tanα =
r
D

tanα = 2rtan
ω
2

α = arctan(2rtan
ω
2

)

α = ωr′

r′ =
1
ω

arctan(2rtan
ω
2

)

Alpha-Beta Velocity Model

• Low order approximation appropriate for simple systems

• Assuming constant velocity over a small time interval

•

•

•

•

• Values for and are adjusted experimentally

x−
k+1 = x−

k + vkΔt

v−
k+1 = vk

x+
k+1 = x−

k+1 + α(xk+1 − x−
k+1)

v+
k+1 = v−

k+1 +
β
Δt

(xk+1 − x−
k+1)

α β

31

FAST

• Suitable for real-time feature estimation because of computational efficiency

• Select 16 pixels around candidate p

• N (usually 12) contiguous pixels are either all brighter or all darker than p

Features from Accelerated Segment Test corner detection

32

Shi-Tomasi Score

• If and are eigenvalues of , then

• Shi-Tomasi proposed:

λ1 λ2 M C(x) = λ1λ2 − κ(λ1 + λ2)2

C(x) = min(λ1, λ2)

Detection of Corners

33

8- and 4-Point Algorithms

34

5-Point Algorithm

1. Epipolar constraint can be written as . Stacking for all five points we obtain a
5x9 matrix. Compute four vectors, , which span the null space of the matrix.

2. . Now find a solution for by inserting the equation into the
ten cubic constraints.

3. After determining , recover and .
4. Use RANSAC to recover the best hypothesis.

m̃TẼ = 0 m̃T

X̃, Ỹ, Z̃, W̃

E = xX + yY + zZ + wW x, y, z

E R t

Rough Overview

35

mT
1 Fm2 = 0

det(E) = 0

2EETE − tr(EET)E = 0

Equipment Used

36

Unibrain Fire-i video camera

equipped with a 2.1mm wide-angle lens
Intel Core 2 Duo 2.66 GHz processor

Building a Map

37

