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1. Introduction
Main contributions of the paper:

• Combine depth prediction via Convolutional Neural Network (CNN) with small baseline stereo
depth prediction (best of both worlds).

• Solve the scale ambiguity issue via domain specific knowledge learned by the CNN (estimate
absolute scale of reconstruction).

• Semantic labeling via CNN seamlessly integrated with dense SLAM (joint 3D and semantic
reconstruction).

• Significantly outperform state-of-the-art methods in the benchmarks.
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2. Related work
• Engel et al. (2014) (LSD-SLAM) inspired, but CNN-SLAM has dense depth map.

• Laina et al. (2014) already used CNN, but without refinement (blurring artifacts, lacking shape
details). CNN-SLAM uses the same network architecture.

• Engel et al. (2013) frame-wise depth refinement scheme is used, but CNN-SLAM refines every
element of the key-frame (dense depth map).

• Semantic label fusion similar to Tateno et al. (2015).
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3.1. Camera Pose Estimation
• Weighted Gauss-Newton optimization on the objective function
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with r , the photometric residual, defined as
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and Vki , the 3D vertex map, as
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3.2. CNN-based Depth Prediction and Semantic
Segmentation
• CNN architecture for depth prediction:
− Based on ResNet-50 and initialized with pre-trained weights on ImageNet dataset.

− Decapitate ResNet-50 last pooling and fully connected layers.

− Replace them by up-sampling blocks: combination of unpooling and convolutional layers.

− Result: a Fully Convolutional Network (FCN) with all the layers of the first part (before
up-sampling) already trained.

− Retrain for depth prediction on the NYU Depth v2 dataset.

• Same CNN architecture for semantic segmentation except for:
− Last layer that has as many output channels as number of categories.

− Soft-max layer at the end to get the mode of a nice probability distribution.

− Cross-entropy loss minimized by Stochastic Gradient Descent (SGD).
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3.3. Key-frame Creation and Pose Graph
Optimization
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3.3. Key-frame Creation and Pose Graph
Optimization
• Adjust depth estimation by ratio of focal length:

Dki(u) =
fcur
ftr
D̃ki(u)

• Uncertainty map associated to depth map of key-frame ki w.r.t nearest key-frame kj :

Uki(u) =
(
Dki(u)−Dkj

(
π
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)))2

• Propagated uncertainty map from nearest key-frame kj :

Ũkj(v) =
Dkj (v)

Dki (u)Ukj(v) + σ2
p

with v = π
(
KT ki

kj
Ṽki (ũ)), and σ2

p is Gaussian noise.
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3.3. Key-frame Creation and Pose Graph
Optimization
• Fuse depth maps according to weighted scheme:

Dki(u) =
Ũkj (v)·Dki (u)+Uki (u)Dkj (v)

Uki (u)+Ũkj (v)

Uki(u) =
Ũkj (v)·Uki (u)

Uki (u)+Ũkj (v)

• Furthermore, the pose graph is updated at each new key-frame (edge creation based on small
relative pose).

• And the pose of key-frames is refined via pose graph optimization.
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3.4. Frame-wise Depth Refinement
• Refinement of key-frame depth map (and uncertainty map) via small-baseline stereo matching

with every new frame.

• Dt and Ut are computed by enforcing color consistency minimization between a key-frame and
associated input frames (5-pixel matching along the epipolar line).

• Update key-frame depth map and uncertainty map:

Dki(u) =
Ut(u)·Dki (u)+Uki (u)Dt(u)

Uki (u)+Ut(u)

Uki(u) =
Ũt(u)·Uki (u)

Uki (u)+Ũt(u)

• Dt and Ut are already aligned with the key-frame based on the camera pose T ki
t .
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3.5. Global Model and Semantic Label Fusion
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4. Experiments and results

• LSD-SLAM provides very nice boundaries/shape details (high gradient information), but it is very
sparse.

• Raw Depth Prediction via CNN is dense but very blurry.

• With the proposed refinement approach (Ours) we can achieve both dense and detailed depth
prediction (best of both worlds).
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5. Personal comments
• Absolute scale information allows avoiding scale-drift. It would be nice to compare results with the

ones obtained with ORB-SLAM for specific hard sequences. I expect CNN-SLAM performs
significantly better.

• Focal length adjustment is very easy to implement, generalize to different cameras and provides
additional accuracy.

• The system seems quite big, I can imagine it is hard to implement/maintain/update. On the other
hand, the modular architecture helps to alleviate this issue and the system makes a good use of
resources when deployed (CPU + GPU).

• At some point the authors claim the training set and validation set are completely different. I am
skeptical about this.

• Careful not to forget/ignore the assumptions the system makes, e.g., camera velocity, texture of
the world, brightness consistency or representativity of the training set.

• One could argue comparison to other SLAM systems may be a little unfair, since this one has
additional information about absolute scale. However, this is precisely the point of introducing the
CNN.
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6. Summary
• The proposed system solves both KSLAM and Semantic Segmentation.

• Depth prediction via CNN (FCN based on Resnet50) on keyframes, and via small baseline stereo
on other frames.

• Absolute scale information is incorporated into the model by the CNN, overcoming major limitation
of traditional SLAM systems.

• Blurry areas of CNN depth maps refined with weighted scheme integrating information from
nearby frames.

• The refinement further improves the accuracy.

• Output of KSLAM is used as input for Semantic Segmentation.

• Same CNN architecture used for Semantic Segmentation, only change last layers.

• Real-time capable system using both CPU and GPU.
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Notation
• π : R3 → R2, π([xyz]T ) = (x/z, y/z)T (homogeneous coord. to Cartesian coord. projection).

• K (camera intrinsic matrix).

• ρ (Huber norm) (robust average of L1 and L2 norms).

• K = {k1, . . . , kn}, n ∈ N (set of key-frames).

• u = (x , y) ∈ Ω (generic depth map element).

• u̇ ∈ R3 (homogeneous representation of u).

• ũ ⊂ u ∈ Ω (image domain subset with high color gradients).

• t ∈ N (time step).

• Rt ∈ SO(3) (rotation matrix in the 3D Special Orthogonal group).

• t t ∈ R3 (translation vector).

• T ki
t = [Rt , t t ] ∈ SE(3) (transformation between nearest key-frame ki and frame t , in the 3D Rigid

Body Transformations group).

• It : Ω→ R3 (intensity image of frame t).

• Dki (depth map of key-frame ki , computed by CNN).
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ResNet
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ResNet

Figure: https://www.kaggle.com/keras/resnet50
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ResNet
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ResNet
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FCN

Figure: https://arxiv.org/pdf/1411.4038.pdf
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