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Fig. 1. ARCore Demo [1]




Introduction
Challenges of the task at hand:

• Support a wide range of phones
• Deliver dense depth at low latency and low computation

Achieved a novel pipeline capable of supplying depth maps at 30 Hz leveraging:

• Single RGB camera
• Single CPU
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Introduction
Capabilities demonstrated on high-level AR Applications:

• Real-time navigation
• Shopping
• Fun photos
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Fig. 2. AR Occlusions [2]
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Overview

Tracking pose Identify keyframe Polar rectification Stereo matching

Bilateral solver Late-stage rendering
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Overview
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Fig. 3. Depth from Motion Pipeline [2]
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Keyframe Selection
Previous approaches for motion stereo:

• Keyframes from a fixed time delay [3], [4]
• Feature or geometry tracking [5], [6]
• Pixel-wise view selection [7], [8]

Soft-cost function is defined with:

• Fixed capacity pool of potential keyframes
• Metrics for the two frames evaluated
− Baseline distance in 3D
− Fractional overlap of the image areas
− Measured error of pose-tracking statistics
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Stereo Rectification
Some important aspects:
• Search can be constrained to a 1D problem, given 2 cameras and their respective poses
− l ′ = Fx

• Modern CPUs feature linear cache pre-fetch behavior
• Rectification can be either planar or polar
• The polar rectification technique described in [9] is used
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Fig. 4. Image rectification [10]



Stereo Rectification
Additional processing steps were implemented so that corresponding pixels in rectified images lie in a fixed disparity range:
• Estimating image-flip
− Using dot product
− Avoid breaking the requirement of x ′ < x
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Fig. 5. Image flip [2]



Stereo Rectification
Additional processing steps were implemented so that corresponding pixels in rectified images lie in a fixed disparity range:
• Estimating image-flip
− Using dot product
− Avoid breaking the requirement of x ′ < x

• Estimating image-swap and x-shift
− Estimate disparity ranges to predict which image is used

as reference
− Reference image and required amount of horizontal shift

selected
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Fig. 6. Horizontal shift [2]



Stereo Rectification
Additional processing steps were implemented so that corresponding pixels in rectified images lie in a fixed disparity range:
• Estimating image-flip

• Using dot product
• Avoid breaking the requirement of x ′ < x

• Estimating image-swap and x-shift
• Estimate disparity ranges to predict which image is used as reference
• Reference image and required amount of horizontal shift selected

• Improving horizontal resolution for higher quality stereo-matching
− Standard techniques have a similar sub-pixel accuracy of 0.2 pixels
− Rectified images can be bigger than the original ones
− Re-size so that disparity range matches maximum expected number of disparities

• Accounting for some pose uncertainty
− Setting minimum expected number of disparities between [5, 10]
− Disk of 20 pixels around the epipole is invalidated
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Stereo-Matching
The goal in this section of the pipeline is to generate a sparse depth map. For this task the pairwise-CRF is used:

E(Y |D) = ∑
i

ψu(yi = li) +∑
i

∑
j∈Ni

ψp(yi = li ,yj = lj)

where ψu measures the likelihood that two pixels are in correspondence and ψp acts as a regularizer that encourages piece-wise
smooth solutions.

We optimize this cost function using a hybrid of PatchMatch [11] and HashMatch [12]

• The basic idea of CRF inference using PatchMatch [11] is to propagate good disparity labels
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Stereo-Matching
PatchMatch [11] consists of 3 steps:

• Random initialization of the disparity map
• Propagation of the disparity labels
− argminf (x ,y){D(f (x ,y)),D(f (x−1,y)),D(f (x ,y −1))}

where f (x ,y) is the disparity value for the pixel (x ,y)
and D(f(x, y)) is the error between the patch at pixel
(x ,y) in A and the pixel (x ,y) + f (x ,y) in B

• Random search
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Fig. 7. PatchMatch steps [11]



Stereo-Matching
The authors introduced a propagation strategy that is tailored for modern CPUs

• Used the fact that a vector register of pixels represents a subset of a particular image row
• Achieved paralelism, and hence, improved performance
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Fig. 8. Independence of horizontal line pixels [2]



Stereo-Matching
Then, most of the unstable predictions are invalidated:

• CRF-cost thresholding
• Decision tree approximation of connected component analysis
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Fig. 9. CRF-cost invalidation in disparity space [2] Fig. 10. Connected component invalidation in disparity space [2]



Stereo-Matching
Then, most of the unstable predictions are invalidated:

• CRF-cost thresholding
• Decision tree approximation of connected component analysis

The final step in this section is the computation of depth values using the obtained sparse disparity map

• Solving the linear problem described in [13] which is not optimal but fast to solve
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Bilateral Solver Extensions
At this point the following step is the densification of the depth map. Here the bilateral solver [14] is applied, since it encourages
smoothness while maintaining fidelity with respect to some observation (the sparse depth map in this case).

This technique formulates the following optimization problem:

minimize
x

λ

2 ∑
i,j

Ŵi,j(xi −xj)
2 +∑

i
ci(xi − ti)2

where t is a "target" image (the noisy sparse depth map), c is a "confidence" image (the inverse of the invalidation mask), x is the
recovered "output" image retrieved by the solver, λ is the smoothness parameter, and W the bilateral affinity matrix defined as:

Wi,j = exp

−
(

px
i −px

j

)2
+
(

py
i −py

j

)2

2σ2
xy

−
(ri − rj)

2

2σ2
r


where each weight is computed based on a "reference" image r (the grayscale image from the camera)
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Bilateral Solver Extensions
It is important to understand the effect of the bilateral affinity matrix W

Wi,j = exp

−
(

px
i −px

j

)2
+
(

py
i −py

j

)2

2σ2
xy

−
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Fig. 11. Bilateral filter [15]



Bilateral Solver Extensions
This problem is extremely expensive:

• Can be taken from the pixel-space to the bilateral-space
• Significant reduction in the number of variables

This is accomplished by using the bilateral grid representation of the image derived from the following decomposition of Ŵ :

Ŵ = ST B̄S

Now the relation between spaces can be expressed as follows:

x = ST y

with x the pixel values and y the values for each bilateral grid vertex.
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Bilateral Solver Extensions
The following image is included for a better understanding of this problem domain transformation where the slice operation
corresponds to the multiplication by ST
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Fig. 12. Bilateral grid [16]



Bilateral Solver Extensions
The bilateral solver minimizes the squared distances between pixels that are bilaterally close

• Strong bias towards fronto-parallel depth maps

The authors deviced the planar bilateral solver

• Embedding the bilateral solver in a per-pixel
plane-fitting algorithm

• Not confounded by foreshortened surfaces
− Slanted planes
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Fig. 13. Bilateral solver vs. Planar bilateral solver [2]



Bilateral Solver Extensions
Further improvements of the bilateral solver were introduced:

• Late-stage slicing for extremely low-latency edge-aware depth estimates
• Exponential moving average of the bilateral grid of depths for temporally consistent solutions
• Warm start of the gradient descent using previous frame’s solution
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Fig. 14. Late-stage slicing [2]



Bilateral Solver Extensions
Further improvements of the bilateral solver were introduced:

• Late-stage slicing for extremely low-latency edge-aware depth estimates
• Exponential moving average of the bilateral grid of depths for temporally consistent solutions
• Warm start of the gradient descent using previous frame’s solution
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Fig. 15. Temporal filtering [2]
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Experiments and Results
The overall performance of the stereo matching approach was tested on the Middlebury Stereo Dataset V3 [17] and
quantitatively compared to other alogrithms:

• Intel R200
• Local expansion moves introduced by [18]
− Offline technique

Camilo Rey (TUM) | The Evolution of Motion Estimation and Real-time 3D Reconstruction | January 19, 2021 29

Table 1. Bad 2.0 error on the dense benchmark[2]



Experiments and Results
The introduced approach was also qualitatively compared to:
• Deep Learning approaches
− End-to-end learning of geometry and context for deep

stereo regression, by Kendall et al. [19]
− Unsupervised monocular depth estimation with left-right

consistency, by Godard et al. [20]
• iPhoneX
− Stereo pair
− Powerful computational resources
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Fig. 16. Comparison to deep neural networks [2]



Experiments and Results
The introduced approach was also qualitatively compared to:
• Deep Learning approaches
− End-to-end learning of geometry and context for deep

stereo regression, by Kendall et al. [19]
− Unsupervised monocular depth estimation with left-right
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Fig. 17. Pixel 2 (on the left) compared to iPhoneX (on the right) [2]
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Summary
This works succesfully combines and extends several techniques in order to achieve low-latency edge-aware depth maps on
mid-range to high-end phones, which conveys some limitations:

• Monocular setting
• Limited computational resources
• Free motion of the user

Technical contributions of the novel depth from motion pipeline:

• Use of polar rectified images for efficient stereo matching
• New keyframe selection strategy
• Highly optimized stereo matching algorithm: PatchMatch[11] + HashMatch[12]
• New extensions of the bilateral solver for depth post-processing
− Higher quality point clouds by introduction of plane-fitting
− Warm initialization
− Temporal filtering

• New late stage rendering step that provides a fluid low-latency experience to users
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Thanks for your attention!

Do you have any questions?
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