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➢ Monocular sparse direct visual odometry (VO) framework which exploits deep neural networks 
on three levels - deep depth, pose and uncertainty.

➢ Outperforms SOTA monocular VO methods by a large margin.

➢ Achieves comparable results to SOTA stereo/LiDAR odometry and visual-inertial odometry 
(VIO) methods, while using only a single camera.
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Figure 1. Performance of D3VO  on EuRoC MAV Dataset and KITTI Odometry Benchmark [16]. 
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Contributions to Limitations of VO:

Scale drift & low robustness of monocular VO
➔ Deep self-supervised monocular depth estimation 

network

Limited utilization of deep neural networks
➔ Deep pose estimation

Inconsistent illumination between training image pairs
➔ Brightness alignment of image pairs

Photometric uncertainty
➔ Deep uncertainty estimation
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Overview

Figure 2. D3VO Framework



Contributions to Limitations of VO

Integration of predicted depth into VO system
➔ Initialize 3D points with the predicted depth
➔ Virtual stereo term

Integration of predicted pose into VO system
➔ Incorporate into both front-end tracking and 

back-end optimization 

Integration of predicted uncertainty map  into VO system
➔ Use the predicted uncertainty map in the weighting 

function of the VO energy function
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Figure 2. D3VO Framework



MonoDepth2 [4]: In the absence of ground truth depth, train 

a depth estimation model using image reconstruction as the 

supervisory signal.  

● Learn depth with Depth Net, motion with Pose Net.

● Minimize photometric reprojection error based on 

photometric constancy:

                       (1)

                     (2)
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Method Description 
Self-supervised Network

Figure 3. MonoDepth2 architecture

t: Index of target frame               K: Camera intrinsics
t’: index of all source frames                   It’→t: Synthesized It

V: Set of all pixels on It               r(): Photometric error
Dt: Predicted depth               proj(): Projection function
Tt→t’: Predicted pose               <>: Bilinear sampler



Photometric constancy assumption may be violated due to 
illumination changes and auto-exposure of the camera to 
which both L1 and SSIM losses are not invariant.

➔ Align the illumination of It to It’ by predicting affine 
transformation parameters via pose network.

➔ Minimize photometric reprojection error based on 

photometric constancy + affine transformation:

          (3)
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Method Description 
Self-supervised Network

Figure 4. (a) Extended MonoDepth2 
architecture. Pose Net predicts 
additional brightness transformation 
parameters.

Figure 5. Examples of affine brightness transformation on EuRoC MAV. 
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Method Description 
Self-supervised Network

Non-Lambertian surfaces, high-frequency areas and moving objects also violate the brightness 
constancy assumption.

➔ Can be seen as observation noise, leverage the concept of heteroscedastic aleatoric 
uncertainty.

● Predict a posterior probability distribution for each pixel parameterized with its mean as 
well as its variance p(y|y ̃, σ). No ground-truth label for σ is needed for training! 

                                                                          (4)

● Depth network predicts higher σ for the pixel areas  where the assumption may be 

violated.    

Figure 6. Uncertainty prediction results on Cityscapes with the model trained on KITTI [16].
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Method Description 
Self-supervised Network

➔ Minimize photometric reprojection error based on 

photometric constancy + affine transformation + 

aleatoric uncertainty:

         (5)

Total loss function is the summation of the self-supervised 

losses and the regularization losses on multi-scale images:

          (6)

Figure 4. (b) Extended MonoDepth2 
architecture. Depth Net predicts an 
additional uncertainty map.



D3VO aims to minimize a total photometric error Ephoto defined as: 

                                                                                                          (7)     
 

                                                                                                                           (8)

      (9)

In DSO [1] the residual is down-weighted when the pixels are with high image gradient to compensate 
small independent geometric noise. In realistic scenarios there are more sources of noise!
➔ Incorporate learned uncertainty to the weighting function to make it dependent to also higher 

level of noise pattern:

                                (10)
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Method Description 
D3VO - Predicted Uncertainty Integration

F: Set of all keyframes
Pi: Set of points hosted in keyframe i 
obs(p): Set of keyframes in which point p is observable 

N: Set of 8 neighboring pixels of p 
a, b: affine brightness parameters jointly estimated · 
||γ : Huber norm
dp: Depth of point p
Π(·): Projection function 



Traditional monocular VO methods [1] initialize dp randomly.
➔ Incorporate predicted depth into the VO system:

1. Initialize the point with                          which provides metric scale.
2. Introduce a virtual stereo term as in DVSO [15] to optimize the estimated depth dp from 

VO to be consistent with the depth prediction of the Depth Net.

   (11)

(12)
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Method Description 
D3VO - Predicted Depth Integration

Figure 7. Virtual stereo term descriptive figure.



Traditional direct VO approaches initialize the front-end tracking for each new frame with a constant 
velocity motion model. 
➔ Leverage the predicted poses between consecutive frames to build a non-linear factor graph for 

direct image alignment. 
  
    

➔ Use the pose estimated from front-end tracking to initialize the photometric bundle adjustment 
back-end.
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Method Description 
D3VO - Predicted Pose Integration

Figure 8. Visualization of the factor graph created for the front-end tracking in D3VO [16]. From left to right 
are the factor graph when the first, second and the third frame comes after the newest keyframe.



➔ Introduce a prior for the relative keyframe pose using the predicted pose:

(13)

● Pose term forces the predicted pose from Pose Net and the estimated pose to be 
consistent.

Total energy function:

(14)

Etotal is minimized using the Gauss-Newton method.
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Method Description 
D3VO - Predicted Pose Integration



KITTI Eigen Split
Trained on stereo sequences which gives 9,810 training quadruplets:

○ 3 (left) temporal images 
○ 1 (right) stereo image
○ 4,424 for validation

EuRoC MAV Dataset 
11 sequences categorized as easy, medium and difficult considering camera motion and illumination 
both between stereo and temporal images.

● Experiment 1: Train models with the monocular setting on MH sequences and test on V2_01 .
● Experiment 2: Use 5 sequences MH_01, MH_02, MH_04, V1_01 and V1_02 as the training set. 

○ Remove static frames for training

○ 11,422 images for training and 1269 images for validation

➢ Ablation study of brightness transformation parameters and photometric uncertainty.  

14Başak Melis Öcal | The Evolution of Motion Estimation and Real-time 3D Reconstruction

Experiments & Results
Monocular Depth Estimation
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Experiments & Results
Monocular Depth Estimation

Table 1. Depth evaluation results on the KITTI Eigen split. M: 
self-supervised monocular supervision; S: self-supervised stereo 
supervision; D: ground-truth depth supervision; D*: sparse auxiliary 
depth supervision. Upper part shows the comparison with 
Monodepth2 [4], lower shows the comparison with the SOTA 
semi-supervised methods using stereo as well as depth supervision. 

Table 2. Upper part shows evaluation results of 
V2_01 in EuRoC MAV, lower part shows evaluation 
results of V2_01 in EuRoC MAV with the model 
trained with all MH sequences. 

Approach Train RMSE 

MonoDepth2 [4] MS 4.750 

Ours, uncer MS 4.532 

Ours, ab MS 4.650 

Ours, full MS 4.485 

[6] DS 4.621 

DVSO [15] D*S 4.442 

Ours MS 4.485 

Approach RMSE 

MonoDepth2 [4] 0.370

Ours, ab 0.339 

Ours, uncer 0.368 

Ours, full 0.337 

[5]  0.971 

Ours 0.943
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Experiments & Results
Monocular Depth Estimation

Figure 9. Qualitative results from KITTI and EuRoC MAV. The original image, the predicted depth maps and the 
uncertainty maps are shown from the left to the right, respectively. In particular, the network is able to predict high 
uncertainty on object boundaries, moving objects, highly reflecting and high frequency areas [16]. 
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Figure 10. Results on Cityscapes with the model trained on KITTI [16].

Monocular depth estimation performance on Cityscapes Dataset: Network has the generalization 
capability on both depth and uncertainty prediction. Predicts high uncertainties on reflectance, object 
boundaries, high-frequency areas, and moving objects. 
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Experiments & Results
Monocular Visual Odometry

KITTI Odometry Benchmark
11 sequences with provided ground-truth poses:

○ Sequences 00, 03, 04, 05, 07 are in the training set of the Eigen split

○ Use the rest of the sequences as the test set
● Evaluation metric: Relative translational error trel

EuRoC MAV Dataset 
MH_03_medium, MH_05_difficult, V1_03_difficult, V2_02_medium and V2_03_difficult are used as the test 

set. All the other sequences are used for training. 

● Evaluation metric: Root mean square (RMS) of the absolute trajectory error (ATE) after aligning 
the estimates with ground truth 

➢ Ablation study on the integration of deep depth, pose and uncertainty.
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Table 3. Results of the SOTA monocular 
methods and SOTA stereo methods on test 
split of KITTI Odometry. Ablation study for the 
integration of deep depth (Dd), pose (Dp) as 
well as uncertainty (Du) is also shown. 

Table 4. Comparison to other hybrid methods as well as end-to-end 
methods on Seq. 09 and 10 of KITTI Odometry. 

Approach Mean

Mono
DSO [1] 65.8

ORB [9] 37.0

Stereo

S. LSD [2] 1.29

ORB2 [10] 0.91

S. DSO [14] 0.89

Dd 0.88

Dd + Dp 0.87

Dd + Du 0.84

D3VO 0.82

Approach Seq. 09 Seq. 10

End-to-end

UnDeepVO [7] 7.01 10.63

Zhan et al. [18] 11.92 12.45

SGANVO [3] 4.95 5.89

Gordon et al. [5] 2.7 6.8

Hybrid

CNN-SVO [8] 10.69 4.84

Yin et al. [17] 4.14 1.70

Zhan et al. [19] 2.61 2.29

DVSO [15] 0.83 0.74

D3VO 0.78 0.62
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Approach M03 M05 V103 V202 V203 Mean

M
DSO [1] 0.18 0.11 1.42 0.12 0.56 0.48

ORB [9] 0.08 0.16 1.48 1.72 0.17 0.72

M + I
VI-ORB [11] 0.09 0.08 X 0.04 0.07 0.07+X

VI-DSO [13] 0.12 0.12 0.10 0.06 0.17 0.11

End-end VO 1.80 0.88 1.00 1.24 0.78 1.14

Dd 0.12 0.11 0.63 0.07 0.52 0.29

Dd + Dp 0.09 0.09 0.13 0.06 0.19 0.11

Dd + Du 0.08 0.09 0.55 0.08 0.47 0.25

D3VO 0.08 0.09 0.11 0.05 0.19 0.10

S + I Basalt [12] 0.06 0.12 0.10 0.05 - 0.08

D3VO 0.08 0.09 0.11 0.05 - 0.08

Table 5. Evaluation results on EuRoC MAV. Results of DSO and ORB-SLAM as baselines are shown and D3VO is compared with other 
SOTA monocular VIO (M+I) and stereo VIO (S+I) methods. The best results among the monocular methods are shown as blue bold and 
the best among the stereo methods are shown as orange bold. 
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Figure 11. Qualitative comparison of the trajectories on MH_05_difficult and V1_03_difficult from EuRoC MAV [16]. 
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D3VO CVPR presentation video [16].

http://www.youtube.com/watch?v=a7CAkJbhcm8&t=271
http://www.youtube.com/watch?v=a7CAkJbhcm8&t=271
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● Selected size of training images (512 x 216) might affect the performance of predicted poses and 
depths.

✔ Addressing brightness constancy assumption violation problem also solved most of the failure 
cases of MonoDepth2 [4].

● Improving the generalization capability of monocular depth estimation among very different 
scenarios is still a challenge! 

✔ Comprehensive utilization of deep neural networks and clever integration of predictions.

✔ More consistent pose estimations obtained which reflects the lower drift of pose estimations.

✔ Achieves the precision of the SOTA stereo/lidar/visual-inertial odometry while using only a 
single camera.



➢ D3VO is a framework for monocular visual odometry that enhances the performance of 
geometric VO methods by exploiting the deep neural networks on three levels: monocular 
depth, photometric uncertainty and relative camera pose.

➢ A self-supervised monocular depth estimation network is introduced which also predicts 
brightness transformation parameters and uncertainty map to better address the brightness 
constancy assumption violation.

➢ The predicted depth, uncertainty and pose are incorporated into both the front-end tracking 

and back-end non-linear optimization of a direct VO pipeline. 

➢ D3VO sets a new SOTA on KITTI Odometry and also SOTA performance on the challenging 

EuRoC MAV, rivaling with leading mono-inertial and stereo-inertial methods while using only a 

single camera. 
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