

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Authors : Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl and Daniel Cremers Robotics: Science and Systems Conference (RSS) Yusuf Ziya Güleray Munich, 5. October 2020

2013

Goal and Constraints

- Real-time camera tracking and 3D reconstruction
- Static indoor environments using an RGB-D sensor
- **Real-Time** capable on a laptop with a Quadro GPU
- Absolute metric information and minimal drift
- Augmented reality applications: computer games, home decoration, and refurbishment measures

Fundamentals

- **RGB-D Camera :** measures depth of every pixel (Asus Xtion Pro Live)
- **Voxel Grid :** Volumetric Pixel, represents a value on a regular grid in three-dimensional space
- Signed distance function (SDF) : Represents the distance to surface in a voxel grid

Approach

of Environment

of Environment

Camera Tracking

ТШ

Finding the pose that fits the depth image to the SDF best

Camera Tracking Cont.

- Lie Group so(3) is a minimal representation
- Optimization using Lie Group becomes
 unconstrained

Lie Algebra SO(3)

```
R \in GL(3)
R^{T}R = I
\det(R) = 1
Lie Group so(3)
\{\widehat{w} \mid w \in R^{3}\}
```


Rigid body motion parameters in so(3) : $\boldsymbol{\xi} = (\omega_1, \omega_2, \omega_3, v_1, v_2, v_3)$

$$E(\xi)) = \sum_{i,j} \psi (R\mathbf{x}_{ij} + \mathbf{t})^2 = \sum_{i,j} \psi_{ij}(\xi)^2$$
$$\psi_{ij}(\xi) = \psi (Rx_{ij} + t)$$

Camera Tracking Cont.

$$\begin{split} \psi(\xi) &\approx \psi(\xi^{(k)}) + \nabla \psi(\xi^{(k)})^{\mathsf{T}}(\xi - \xi^{(k)}) \\ E_{\text{approx}}(\xi) &= \sum_{i,j} \left(\psi_{ij}(\xi^{(k)}) + \nabla \psi_{ij}(\xi^{(k)})^{\mathsf{T}}(\xi - \xi^{(k)}) \right)^{2} \\ &\frac{\mathrm{d}}{\mathrm{d}\xi} E_{\text{approx}}(\xi) = 0 \\ \sum_{i,j} \psi_{ij}(\xi^{(k)}) \nabla \psi_{ij}(\xi^{(k)}) + \nabla \psi_{ij}(\xi^{(k)}) \nabla \psi_{ij}(\xi^{(k)})^{\mathsf{T}}(\xi - \xi^{(k)}) = 0 \\ A &\coloneqq \sum_{i,j} \nabla \psi_{ij}(\xi^{(k)}) \nabla \psi_{ij}(\xi^{(k)})^{\mathsf{T}} \in \mathbb{R}^{6 \times 6}, \qquad b \coloneqq \sum_{i,j} \psi_{ij}(\xi^{(k)}) \nabla \psi_{ij}(\xi^{(k)}) \in \mathbb{R}^{6 \times 1} \\ &b + A\xi - A\xi^{(k)} = 0 \\ &\xi^{(k+1)} = \xi^{(k)} - A^{-1}b \end{split}$$

8

Camera Tracking Cont.

KinectFusion generates a **synthetic depth image** from SDF and aligns it using ICP

Here SDF is used **directly** during minimization

SDF - Distance and Weighting Functions

- Depth image : distance to the surface for each pixel
- SDF : distance to the surface from each voxel

How to integrate the new **depth images** to the **SDF**?

Computing the true distance of each voxel is not feasible, it has to be approximated:

1) Projective Point-To-Point

$$\mathbf{x} = (x, y, z)^{\mathsf{T}}$$
$$(i, j)^{\mathsf{T}} = \pi(\mathbf{x})$$
$$d_{\text{point-to-point}}(\mathbf{x}) := z - I_d(i, j)$$

2) Projective Point-To Plane

$$d_{\text{point-to-plane}}(\mathbf{x}) := (\mathbf{y} - \mathbf{x})^{\mathsf{T}} \mathbf{n}(i, j)$$

Data Fusion and 3D Reconstruction

Given a sequence of approximated distance measurements and the weights for voxel cell, find the best possible estimate for $\psi(x)$.

$$p(d_{1}, w_{1}, ..., d_{n}, w_{n} | \psi) \propto \prod_{i=1}^{n} \exp\left(-\frac{1}{2}w_{i}(\psi - d_{i})^{2}\right) \xi_{n+1}$$

$$L(\psi) = \sum_{i=1}^{n} \frac{1}{2}w_{i}(\psi - d_{i})^{2}$$

$$\psi = \frac{\sum_{i=1}^{n} w_{i}d_{i}}{\sum_{i=1}^{n} w_{i}}$$

$$D \leftarrow \frac{WD + w_{n+1}d_{n+1}}{W + w_{n+1}}$$

$$W \leftarrow W + w_{n+1}$$

Meshing and Colorization

Marching cubes: Creates a triangle mesh from the zero-crossings in the signed distance function.

Colorization : Texture represented with the channels R, G, B and W for the voxels that are sufficiently close to the surface.

$$(r,g,b)^{\top} = I_{RGB}(i,j)$$
$$R \leftarrow \frac{W_c R + w_c^{n+1} r}{W_c + w_c^{n+1}}$$
$$G \leftarrow \frac{W_c G + w_c^{n+1} g}{W_c + w_c^{n+1}}$$
$$B \leftarrow \frac{W_c B + w_c^{n+1} b}{W_c + w_c^{n+1}}$$
$$w_c^{n+1} = w_{n+1} \cos \theta$$

Results

ПП

Method	Res.	Teddy	F1 Desk	F1 Desk2	F3 Household	F1 Floor	F1 360	F1 Room	F1 Plant	F1 RPY	F1 XYZ
KinFu KinFu Point-To-Plane Point-To-Plane Point-To-Point Point-To-Point	256 512 256 512 256 512	0.156 m 0.337 m 0.072 m 0.101 m 0.086 m 0.080 m	0.057m 0.068 m 0.087 m 0.059 m 0.038 m 0.035 m	0.420 m 0.635 m 0.078 m 0.623 m 0.061 m 0.062 m	0.064 m 0.061 m 0.053 m 0.053 m 0.039 m 0.040 m	Failed Failed 0.811 m 0.640 m 0.641 m 0.567 m	0.913 m 0.591 m 0.533 m 0.206 m 0.420 m 0.119 m	Failed 0.304 m 0.163 m 0.105 m 0.121 m 0.078 m	0.598 m 0.281 m 0.047 m 0.041 m 0.047 m 0.043 m	0.133 m 0.081 m 0.047 m 0.042 m 0.047 m 0.047 m	0.026 m 0.025 m 0.029 m 0.026 m 0.021 m 0.023 m
RGB-D SLAM		0.111 m	0.026 m	0.043 m	0.059 m	0.035 m	0.071 m	0.101 m	0.061 m	0.029 m	0.013 m

Results

Dataset	F1 T	eddy	F1 Desk		
	RMSE	Max	RMSE	Max	
Exp. Weight	0.088 m	0.213 m	0.038 m	0.088 m	
Linear Weight	0.083 m	0.285 m	0.038 m	0.089 m	
Constant Weight	0.093 m	0.242 m	0.040 m	0.089 m	
Narrow Exp.	0.170 m	0.414 m	0.038 m	0.083 m	
Narrow Linear	0.382 m	0.688 m	0.044 m	0.085 m	
Narrow Constant	0.379 m	0.694 m	0.044 m	0.209 m	

	Duration per Frame (ms)
Proposed Alg.	23 ms
KinFu	20 ms
RGB-D SLAM	100 - 250 ms

	Duration for pose optimization	Duration for data fusion
m = 256	19.4 ms	3.7 ms
m = 512	31.1 ms	21.6 ms

	SDF size on RAM	Color grid size on RAM
m = 256	128 MB	256 MB
m = 512	1 GB	2 GB

Conclusion

- Absolute metric information and minimal drift
 - Ideal for home decoration and refurbishment measures
- Highly efficient : **Real-Time** capable on a laptop with a Quadro GPU
- Outperforms ICP-based methods such as KinFu
- Comparable performance with bundle adjustment with significantly less computation
 - Fails in cases where only co-planar surfaces are

Supplementary Documents

- 1. B. Curless and M. Levoy. A volumetric method for building complex models from range images. In SIGGRAPH,1996.
- R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davison, P. Kohli, J. Shotton, S. Hodges, and A.W. Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. In ISMAR, pages 127–136, 2011
- 3. KinectFusion Implementation in the Point Cloud Library (PCL). http://svn.pointclouds.org/pcl/trunk/
- 4. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation of the RGB-D SLAM system. In ICRA, May 2012
- 5. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of RGB-D SLAM systems. In IROS, 2012. https://vision.in.tum.de/data/datasets/rgbd-dataset

SensorRGB& Depth& Microphone*2

Depth Image SizeVGA (640x480) : 30 fps QVGA (320x240): 60 fps

ResolutionSXGA (1280*1024)

Field of View58° H, 45° V, 70° D (Horizontal, Vertical, Diagonal)

Distance of UseBetween 0.8m and 3.5m

Power ConsumptionBelow 2.5W

InterfaceUSB2.0/ 3.0

PlatformIntel X86 & AMD

OS SupportWin 32/64 : XP , Vista, 7, 8 Linux Ubuntu 10.10: X86,32/64 bit Android(by request)

SoftwareSoftware development kits(OpenNI SDK bundled)

Programming LanguageC++/C# (Windows) C++(Linux) JAVA

Operation EnvironmentIndoor

Dimensions18 x 3.5 x 5

Related Work

- A volumetric method for building complex models from range images [Curless and Levoy, 1996]
 - o Represent distance to surface in a voxel grid
 - $\circ~$ Data fusion of depth images with SDF
- KinectFusion: Real-time dense surface mapping and tracking [Newcombe et al., 2011]
 - Generate synthetic depth image from SDF
 - Iterative closest point (ICP) between current and synthetic image

