

Robust Reconstruction of Indoor Scenes

Zygimantas Marcinkus Technische Universität München Garching bei München, 4. September 2020

Tur Uhrenturm

The problem

Figure 1: The real scene

Figure 2: Reconstruction example

Input: the ICL-NUIM dataset

• RGB-D Video (augmented)

(a) Real-image

(b) Depth-map

Figure 3: Real image and depth map comparison

• Ground truth scene

Input: the ICL-NUIM dataset

- RGB-D Video (augmented)
- Ground truth scene

Figure 4: An example of a ground truth scene from ICL-NUIM

Challenges: odometry drift and loop closure

Figure 5: The general concept of loop closure

Challenges: camera noise

Figure 6: An image before and after the removal of camera noise

The paper: Robust reconstruction of indoor scenes

- Authors: Sungjoon Choi, Qian-Yi Zhou, Vladlen Koltun
- Conference on Computer Vision and Pattern Recognition 2015

An overview of the steps for reconstruction discussed in the paper:

- 1. Fragment construction
- 2. Geometric registration
- 3. Robust optimization
- 4. Finalization

Fragment construction

Steps:

- 1. Divide the RGB-D video into *k*-frame segments (k = 50 in all experiments)
- 2. Use RGB-D odometry to estimate the camera trajectory
- 3. Fuse the range images to obtain a surface mesh for each segment

This results in a vertex set $P_i = \{p\}$ and a rigid transformation R_i obtained from RGB-D odometry that aligns P_i and P_{i+1} for each fragment *i*.

Rigid transformations and geometric registration

Figure 7: Visualization of registration with rigid transformations

Zygimantas Marcinkus (TUM) | Robust Reconstruction of Indoor Scenes

Geometric registration: analysis of the algorithms

Figure 8: A graph representing the process of choosing the algorithm used in the paper

$$\frac{1}{|\mathcal{K}_{ij}^*|} \sum_{(\mathbf{p}^*, \mathbf{q}^*)} ||\mathcal{T}_{ij} p^* - q^*||^2 < \tau = 0.2^2 \tag{1}$$

- *T_{ij}* analysed transformation
- T_{ii}^* ground-truth transformation
- *K*^{*}_{ij} set of point-to-point correspondences

Zygimantas Marcinkus (TUM) | Robust Reconstruction of Indoor Scenes

Geometric registration: analysis of the algorithms

	OpenCV	4PCS	Super	PPF	PCL	PCL
			4PCS	Integral		modified
Recall (%)	5.3	20.0	17.8	32.5	44.9	59.2
Precision (%)	1.6	8.9	10.4	7.1	14.0	19.6
Runtime (sec)	10	380	62	83	3	8

Table 1. Performance of geometric registration algorithms. Average running time for aligning two fragments was measured using a single thread on an Intel Core i7-3770 CPU clocked at 3.5 GHz.

Geometric registration: PCL modified

input : A pair of fragments $(\mathbf{P}_i, \mathbf{P}_i)$ **output** : Transformation \mathbf{T}_{ij} and correspondence set \mathcal{K}_{ij} Downsample $\mathbf{P}_i = \{\mathbf{p}\}$ and $\mathbf{P}_j = \{\mathbf{q}\}$; Compute normals $\{n_p\}$ and $\{n_q\}$; Compute FPFH features $\{\mathbf{F}(\mathbf{p})\}\$ and $\{\mathbf{F}(\mathbf{q})\}$; $\mathbf{T}_{ij} \leftarrow \emptyset, \mathcal{K}_{ij} \leftarrow \emptyset;$ max_correspondences $\leftarrow 0$; for $i \leftarrow 1$ to max_iteration do // RANSAC iteration; Randomly pick four points $(\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)$ from \mathbf{P}_i ; Find matching samples $(\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3)$ on \mathbf{P}_i using equation (1); Compute transformation T that aligns these two sets of samples; // Validation; if $\angle(\mathbf{Tn}_{\mathbf{p}_k}, \mathbf{n}_{\mathbf{q}_k}) > 30^\circ$ then continue; if $\|\mathbf{p}_{k} - \mathbf{p}_{k+1}\| < 0.9 \|\mathbf{q}_{k} - \mathbf{q}_{k+1}\|$ or vice versa then continue; Compute correspondences \mathcal{K} between \mathbf{TP}_i and \mathbf{P}_j ; if $|\mathcal{K}| < \frac{1}{2} \min(|\mathbf{P}_i|, |\mathbf{P}_i|)$ then continue; // Update; if $|\mathcal{K}| > max_correspondences$ then $\mathbf{T}_{ij} \leftarrow \mathbf{T}, \mathcal{K}_{ij} \leftarrow \mathcal{K};$ max_correspondences $\leftarrow |\mathcal{K}|$;

Figure 9: Influence region diagram for the point p_q

$$\mathbf{q}_{\mathbf{p}} = \underset{\mathbf{q}\in\mathbf{P}_{j}}{\arg\min} \|\mathbf{F}(\mathbf{p}) - \mathbf{F}(\mathbf{q})\|^{2}.$$

Figure 10: Equation 1 in the algorithm

Figure 11: Pose Graph before optimization.

Figure 12: Pose graph after optimization.

Figure 13: Aspects of an edge connecting the vertex x_i and the vertex x_j .

Figure 14: Example of a pose graph

Output from previous steps:

- Fragments $\{P_i\}$
- Transformations $\{R_i\}$ and T_{ij}

Goal: compute localized set of poses $\{T_i\}$. Concretely, solve:

$$E(\mathbb{T}) = \sum_{i} f(\mathbf{T}_{i}, \mathbf{T}_{i+1}, \mathbf{R}_{i}) + \sum_{i,j} f(\mathbf{T}_{i}, \mathbf{T}_{j}, \mathbf{T}_{ij}).$$
(1)

with $f(T_i, T_j, X)$ measuring inconsistencies between T_i and T_j and the relative pose X.

Robust optimization: alignment term f

$$f(\mathbf{T}_{i}, \mathbf{T}_{j}, \mathbf{X}) = \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \|\mathbf{T}_{i}\mathbf{p} - \mathbf{T}_{j}\mathbf{q}\|^{2}$$
(3)
$$\approx \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \|\mathbf{T}_{i}\mathbf{p} - \mathbf{T}_{j}\mathbf{X}\overline{\mathbf{p}}\|^{2}$$
(4)
$$= \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \|\mathbf{X}^{-1}\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p} - \mathbf{p}\|^{2}.$$
(5)

Figure 15: First glance at the alignment term with K_{ij} as correspondences between XP_i and P_j within $\varepsilon = 0.05$ m.

Robust optimization: computing f

Local parametrization representing $X^{-1}T_j^{-1}T_i$ as $\xi = (\omega, t) = (\alpha, \beta, \gamma, a, b, c)$ and $T_j^{-1}T_i \approx X_i^{-1}$ yields

$$\mathbf{X}^{-1}\mathbf{T}_{j}^{-1}\mathbf{T}_{i} \approx \begin{pmatrix} 1 & -\gamma & \beta & a \\ \gamma & 1 & -\alpha & b \\ -\beta & \alpha & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (6)

$$\mathbf{X}^{-1}\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p} \approx \mathbf{p} + \boldsymbol{\omega} \times \mathbf{p} + \mathbf{t}.$$

Figure 16: Local parametrization of $X^{-1}T_j^{-1}T_i$ results

Robust optimization: computing f

Using approximation (6) in f results in (with $-[p]_x$ is the skew-symmetric matrix form of the cross-product with p, and I is the 3 × 3 identity matrix:

$$f(\mathbf{T}_{i}, \mathbf{T}_{j}, \mathbf{X}) \approx \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \|\omega \times \mathbf{p} + \mathbf{t}\|^{2}$$
$$= \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \|[-[\mathbf{p}]_{\times} | \mathbf{I}] \xi\|^{2}, \quad (7)$$
$$= \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \xi^{\top} \mathbf{G}_{\mathbf{p}}^{\top} \mathbf{G}_{\mathbf{p}} \xi$$
$$= \xi^{\top} \left(\sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{K}_{ij}} \mathbf{G}_{\mathbf{p}}^{\top} \mathbf{G}_{\mathbf{p}} \right) \xi. \quad (8)$$

with $G_{\rho} = [-[\rho]_{x}|I]$

Zygimantas Marcinkus (TUM) | Robust Reconstruction of Indoor Scenes

Robust optimization: line process

(b) Optimization with all pairwise alignments

(c) Optimization with line processes

Figure 17: ICL-NUIM living room 1 with (c) and without (b) line process

Robust optimization: line process

Add a line process $L = \{I_{ij}\}$ with penalty function $\Psi(I) = (\sqrt{I} - 1)^2$:

$$E(\mathbb{T},\mathbb{L}) = \sum_{i} f(\mathbf{T}_{i},\mathbf{T}_{i+1},\mathbf{R}_{i}) + \sum_{i,j} l_{ij} f(\mathbf{T}_{i},\mathbf{T}_{j},\mathbf{T}_{ij}) + \mu \sum_{i,j} \Psi(l_{ij}).$$

Figure 18: The objective including a line process

- $I_{ij} \rightarrow 0$ means $\Psi(I_{ij}) \rightarrow 1$
- $I_{ij} \rightarrow 1$ means $\Psi(I_{ij}) \rightarrow 0$
- $\mu = \tau^2 k$ where k average cardinality of correspondance sets K_{ij} and $\tau = 0.2^2$

Finalization

- 1. use $g^2 o$ to optimize objective (2)
- 2. prune loop closures with $I_{ij} < 0.25$
- 3. refine using ICP
- 4. use pose graph optimization to obtain final fragment poses
- 5. (optional) use nonrigid refinement
- 6. fuse into a global mesh by volumetric integration

	Before	pruning	After pruning		
	Recall (%)	Precision (%)	Recall (%)	Precision (%)	
Living room 1	61.2	27.2	57.6	95.1	
Living room 2	49.7	17.0	49.7	97.4	
Office 1	64.4	19.2	63.3	98.3	
Office 2	61.5	14.9	60.7	100.0	
Average	59.2	19.6	57.8	97.7	

Table 2. The effect of robust optimization. The optimization increases the average precision of the loop closure set from 19.6% to 97.7%.

Zygimantas Marcinkus (TUM) | Robust Reconstruction of Indoor Scenes

Results: synthetic scenes

	Kintin-	DVO	SUN3D	Ours	GT
	uous	SLAM	SfM	Ours	trajectory
Living room 1	0.22	0.21	0.09	0.04	0.04
Living room 2	0.14	0.06	0.07	0.07	0.04
Office 1	0.13	0.11	0.13	0.03	0.03
Office 2	0.13	0.10	0.09	0.04	0.03
Average	0.16	0.12	0.10	0.05	0.04

Table 4. Reconstruction accuracy on ICL-NUIM sequences. Mean distance of each reconstructed model to the ground-truth surface (in meters). Our approach reduces the average error by a factor of 2 relative to the closest alternative approach.

Results: real-world scenes

- No ground-truth scene
- Pair-wise comparisons for each input sequence
- BRE as a measure ([-1; 1])

	Kintin-	DVO	SUN3D	Ours	GT
	uous	SLAM	SfM	Ours	trajectory
Living room 1	-0.53	-0.90	0.02	0.47	0.94
Living room 2	-0.89	-0.65	-0.13	0.66	0.89
Office 1	-0.71	-0.41	-0.15	0.09	0.98
Office 2	-0.83	-0.57	-0.11	0.58	0.90
Average	-0.74	-0.63	-0.09	0.45	0.93

Figure 19: ICL-NUIM scenes evaluated with this procedure

Results: real-world scenes

	DVO	Kintin-	SUN3D	0,1,100	SUN3D
	SLAM	uous	SfM	Ours	manual
hotel_umd	-0.61	-0.45	-0.02	0.66	0.56
harvard_c5	-0.49	-0.01	-0.65	0.94	0.11
harvard_c6	-0.97	0.05	-0.01	0.96	-0.15
harvard_c8	-0.70	-0.61	0.39	0.65	0.46
mit_32_d507	-0.78	-0.28	-0.02	0.74	0.36
mit_76_studyroom	-0.52	-0.47	0.35	0.50	0.19
mit_dorm_next_sj	-0.26	-0.20	-0.23	0.10	0.65
mit_lab_hj	-0.12	-0.57	0.03	0.22	0.50
Average	-0.56	-0.32	-0.02	0.60	0.33

Table 7. Perceptual evaluation on SUN3D scenes. BRE scores computed from pairwise comparisons performed on Amazon Mechanical Turk. The presented approach outperforms all other automatic reconstruction pipelines.

Results: real-world scenes

(c) SUN3D SfM

(d) Our result

(e) Optional non-rigid refinement

Figure 4. Reconstruction of the mit_32_d507 scene from the SUN3D dataset. (a) Reconstruction produced by Kintinuous [61]. (b) Reconstruction produced by DVO SLAM [34]. (c) Reconstruction produced by the off-line RGB-D structure-from-motion pipeline of Xiao et al. [65]. (d) Reconstruction produced by our approach. (e) An optional non-rigid refinement of our result using SLAC [71].

Zygimantas Marcinkus (TUM) | Robust Reconstruction of Indoor Scenes

Summary and Notes

- Reconstruction using global optimization based on line processes
- Robust to erroneous geometric alignments
- Significant accuracy increase
- Potential problem: no actual loop closures
- Potential problem 2: catastrophic odometry failure