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TUTI

Motivation - Indirect vs Direct Methods

Two previous approaches for Context: Indirect Methods (ORB-SLAM 2), Direct Methods (DVO-SLAM)

4. Image Input / - Image Input

/ * ldentity Features (e.g. comers) \ / * Get initial Trajectory and Map Estimates
by using entire Image Information (depth
map, Intensity)

Estimates of Camera and Map estimates

\ / » Track Features for initial Trajectory \ ,

* Optimize Pose and Map Estimation

/ « Optimize Pose and Map Estimation \
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Motivation - Bundle Adjustment

» Optimization problem to jointly estimate optimal
Pose(Trajectory) and optimal 3D coordinates
» e.g. Optimizing Reprojection error

min E(R,T,Xq,..,Xy)

RT,X1,..XN
N 2 2
min z ¥ —n(X;)|| +|% —=(RTX)
RTX1,..XN 2 2
j=1

Noisy data
from image |Reprojection error:
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Motivation - Many ways to compute RGB-D SLAM

SLAM optimization
methods
1
[ I 1 1 1 1

Indirect Fragment- Frame-to-
(feature- Direct BA goﬁemf;;%%?] based D eftl)\gr?]gti o model

based) BA P optimization tracking
ORB—SLAM 2 L BAD-SLAM L DVO-SLAM — L

= Kinitinuous
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Motivation — Authors Goal

 Goal:
» Use fast direct Bundle Adjustment
« Use dense RGB-D measurements
 Perform RGB-D SLAM in real-time
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First Contribution: BAD-SLAM algorithm

Front-end Back-end
Input: RGB-D camera Model (KFs, surfels) Direct BA

.| image v y
Track wrt. last KF € ' < Continuous optimization:

N > poses, surfels, intrinsics
P P A\
New KF: 3@ Loop detected: oo >

es
\L/no — y o \ Creation, merging, deletion
Pose graph optimization ve

Discrete surfel updates:

Figure 2. Approach overview. KF stands for keyframe.
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First Contribution: BAD-SLAM algorithm

~
0
New KF? yﬁs

\L/no

Front-end

Input: RGB-D camera
. image
Track wrt. last KF €

Loop detected? =1
- Yes
Pose graph optimization —

Generic Front-end

Keyframe Selection: every 10th
frame

Loop Closure Detection:

» Identifies keyframe m which is
most similar with the last
keyframe k

» If identified then Loop closure
by Pose graph Optimization
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First Contribution: BAD-SLAM algorithm

Front-end

Input: RGB-D camera
.| image
Track wrt. last KF €

New KF?

\l/no

Loop detected?
- YEs
Pose graph optimization

N
yes;

Model (KFs, surfels)

7

Back-end

Direct BA

< Continuous optimization:
> poses, surfels, intrinsics
\

/" Discrete surfel updates:
\ Creation, merging, deletion

/

Figure 2. Approach overview. KF stands for keyframe.
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Surfels - Surface Elements

Components:

n, € R3: Surfel normal

s € R: Surfel radius

p. € R3: Center Point of Surfel

T%:Linear Transform from fixed world frame G to
local keyframe k

ds € R: scalar visual descriptor

Z axis

S Y axis

G Tk = [5 H] € SE(3)
0T 1

X axis
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Cost function

C(K, S) = z z pTukey (O-D_1 rgeom(sf k)) + wphoto PHuber (O-p_l Tphoto (S, k))

k€K seS
wphoto = 10_2 Squared errors Absolute errors
1 —
= — = @
7 =180 : i

Prukey: Robust loss function (M — Estimator)

thoix)
thoix)

https://upload.wikimedia.org/wikipedia/commons/c/c1/RhoFunctions.png
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Photometric and Geometric Error

Photometric Error: (Color/Intensity)

Tphoto = I, (T[ (T(Z))) - Il(x)

Geometric Error: (Depth)
Tgeo = 2> (T[ (T(Y]))) —Z1(x)

Photometric/Geometric error:
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Cost function - Geometric Residual

geom(s k) - (TGns (T[D k (T[D k(TG ps)) Tlé p_s>)

ldlSt
d,,: measured depth N
ldist
S

’/n_s’ g '/n_s’ —

= —__ Lo
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Cost function - Photometric Residual

o [ ED) @D g
P (D) — 10ma@|| Lfl, =
I
S
'\_) S_1> '\ E’ 5
p I
o[ = -
Ng 2
k\ k\
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Too many variables to optimize!

C(K,S) = 2 2 Prukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

k.. —. .
T;; ps;ng, dg; 75

Optionally Intrinsics:
pi(ime() > K
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How do we optimize this Cost-function?

Solution:
« Alternating optimization
« Most optimization variables separately updated or optimized
« within each iteration the cost function is optimized by alternatingly fixing a set of variables
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Optimization Algorithm (Bundle Adjustment)

» Divided Algorithm into 3 Parts
« Creation of surfels (|S|)

» Optimization of variables (Tk; Do ;s dg; K) Algorithm 1 Surfel-based alternating direct BA scheme

for all keyframes do Create missing surfels

1:

2: for i € [1, max_iteration_count| do
3 Update surfel normals
4:
5

6

/

« Cleanup and final update (|S|; ry)

Optimize surfel positions and descriptors
if i = | then Merge similar surfels
Optimize keyframe poses
: Optimize camera intrinsics (optionally)
8: if no kevframe moved then break
9: for all keyframes which moved in the last loop do|
10: Merge similar surfels

11: Delete outlier surfels; Update surfel radii
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Optimization Algorithm (Bundle Adjustment)

» Divided Algorithm into 3 Parts
« Creation of surfels (|S|)

» Optimization of variables (Tk; Do ;s dg; K) A_lgorithm 1 Surfel-based alternating direct BA scheme
« Cleanup and final update (|S|; ) 1: for all keyframes do Create missing surfels

2: for i € [1, max_iteration_count| do

Update surfel normals

Optimize surfel positions and descriptors
if i = | then Merge similar surfels

Optimize keyframe poses

Optimize camera intrinsics (optionally)
8: if no kevframe moved then break

9: for all keyframes which moved in the last loop do

10: Merge similar surfels

11: Delete outlier surfels; Update surfel radii

VD s
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Part 1 — Surfel Creation 1

1 Cell = 4x4 Pixels

-
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Part 1 — Surfel Creation 1

p € R?

n, € R3

p. € R3

ps = Tinp (P
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Computing initial ng

* duetong Ltyandng 1t,

—4
ng=t, Xty ={ 0
4
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Part 1 — Computing 7y

p € R?

p. € R3

Maximilian Listl | Masterseminar: Recent Advances in 3D Computer Vision | Chair of Computer Vision & Atrtificial Intelligence 23



Part 1 — Surfel Creation 1 P € Neighboring Pixels

I

- 3
ps € R No depth measurement
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Part 1 — Outlier Filter

/

R %

/
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Part 1 — Outlier Filter

\

- N
Q//\ \®
\ — |

k=1
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TUTI

Part 1 — Outlier Filter

Pixel p’s 3D-Point seen Pixel p’s 3D-Point seen
from keyframe k = 1 from keyframe k = 2

/
[= N

/Q
/
FIN

k=2 7<
k
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Part 1 — Outlier Filter

Outlier if :

* Ng < Nyyip O

s ny >ng

* with ny,;; = min(3,1 + |0.2|K|])
|K| :== number of Keyframes
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Optimization Algorithm (Bundle Adjustment)

» Divided Algorithm into 3 Parts
« Creation of surfels (|S|)

» Optimization of variables (Tk; Do ;s dg; K) A_lgorithm 1 Surfel-based alternating direct BA scheme
« Cleanup and final update (|S|; ) 1: for all keyframes do Create missing surfels

2: for i € [1, max_iteration_count| do

Update surfel normals

Optimize surfel positions and descriptors
if i = | then Merge similar surfels

Optimize keyframe poses

Optimize camera intrinsics (optionally)
8: if no keyframe moved then break

9: for all keyframes which moved in the last loop do

10: Merge similar surfels

11: Delete outlier surfels; Update surfel radii

VD s
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Part 2 — n, Update

C(K,S) = 2 2 Prukey (O-l;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

d; 15

Optionally Intrinsics:
pi(ime() > K
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T
Part 2 — n, Update

Average all surfel normals and
normalize them

K
= = - ' n. 1
= ng = ns'k
N N2 - el &
\n—> —
s,1 Mg 3 Averaging
> |7
k=2
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Part 2 — Surfel position p; and descriptor d

C(K,S) = 2 2 Prukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

T @ 3 7”s

Optionally Intrinsics:
pi(ime() > K
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Part 2 — Surfel position p; and descriptor d

nS
<€ —
\ ps,i‘l'l = pS,i + t ns
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Part 2 — Surfel position p; and descriptor d

\ ps,i‘l'l = pS,i + t n_s)
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Part 2 — Surfel position p; and descriptor d

New Parametrization:

Psi+1 = m +t n_s>
min
t,d, C(K,S)

t t P
O B O R
S/i+1 S/ T
with M € R2%?

» Optimization of Cost-function:

Gauss-Newton method

Fix all variables but p. & d,
Each surfel is independent
therefore for each surfel only
need to compute 2x2-Matrix
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Part 2 — Surfel Merging

C(K,S) = 2 Tukey rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

Kk — — .
T;; ps;ng, dg; 75

Optionally Intrinsics:
pi(ime() > K
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Part 2 — Surfel Merging

* Due to Noisy measurements we have
created unnecessary surfels
* How do we eliminate these?
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Part 2 — Surfel Merging

« Solution:
« Merge similar surfels at first iteration of BA scheme 700
« Conditions: (given 2 Surfels: s; & s5)
« Surfel normal: £(ng, ,ng,) < 40°
- Surfel position: ||ps, — s, || < 4 - 0.8 - min(ry,,75) 4+ 0.8 - min(ry,, 75,)
T e
S1 SZ\F “‘i\\
3 [7s; - 7=
ng,
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Part 2 — Keyframe pose

C(K,S) = 2 2 Prukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

N . .

Optionally Intrinsics:
pi(ime() > K
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Part 2 — Keyframe pose

Z axis

X axis
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Part 2 — Keyframe pose

New Parametrization:

Lie Algebra:
knew _ ko knew Fal
T = T T, ¢ € se(3)
: knew fa
with T = exp(¢)
G

X axis
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Part 2 — Keyframe pose

New Parametrization: Lie Algebra:
k _ mkola pk o
TG”eW = TG" Tkgle;” ¢ ese(3)

with T, = exp(&)

min ok s)
7 CCK,

Gauss-Newton:

&= & — U™

Z axis

X axis
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Part 2 — Keyframe pose

New Parametrization: Lie Algebra:
k _ mkola pk o
TG”eW = TG" Tk:,lle;” ¢ ese(3)

with T, = exp(&)

min ok s)
7 CCK,

Gauss-Newton:

&= & — U™

Z axis

X axis
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Part 2 — Camera Intrinsics K

C(K,S) = 2 2 Prukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

k.. —. .
T ps; ng; dg; 75

Optionally Intrinsics:

fip (e )i i ()
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Part 2 — Camera Intrinsics K

Assumption:
» Separate pinhole camera models for RGB and
depth measurements
o fipr(.) > Kp; mpp(n) 2 K

« Additional model for depth deformation
dtrue(x' y) = ddist(xr y) +

Ds(x,y) exp(—ay dgise(x,¥))
* Only optimize parameters Dg(x,y) and a;

* Optimization fast due to Hessian diagonal at
parts corresponding to Dg(x,y)

- . - - - - = == -

Centre of projection focal length £ Image

d p =K1y ps
true
with d; . as inverse depth
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Optimization Algorithm (Bundle Adjustment)

» Divided Algorithm into 3 Parts
« Creation of surfels (|S|)

» Optimization of variables (Tk; Do ;s dg; K) Algorithm 1 Surfel-based alternating direct BA scheme

« Cleanup and final update (|S|; ) 1: for all keyframes do Create missing surfels
2: for i € [1, max_iteration_count| do

3 Update surfel normals

4: Optimize surfel positions and descriptors
5.

6

f/

if i = | then Merge similar surfels

Optimize keyframe poses
: Optimize camera intrinsics (optionally)
8: if no kevframe moved then break
9: for all keyframes which moved in the last loop do
10: Merge similar surfels

11: Delete outlier surfels; Update surfel radii
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Part 3 — Delete Outlier Surfels

C(K,S) = 2 PTukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))
kEK|
k.—>. . .
Tg; ps; ng, ds; Ts

Optionally Intrinsics:
pi(ime() > K
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Part 2 — Surfel Merging
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TUTI

Part 3 — Delete Outlier Surfels

Outlier if :
Ne < Nypin OT Ny > N
with n,,;;, = min(3,1+ |0.2|K|])
|K| = number of Keyframes
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Part 3 — Radius Update

C(K,S) = 2 2 Prukey (0-1;1 rgeom(sr k)) + Wphoto pHuber(azo_l Tphoto (s, k))

k€K SEeS

k. —, .
TG) ps; n51 d

Optionally Intrinsics:
pi(ime() > K
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Part 3 — Radius Update

=
k=2

s

ag® k=
k=1

k=1
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Part 3 — Radius Update

Tsnew = ml.ln Ts,i

(D

k=1
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Interim report: Works but not good enough

Benchmark with TUM RGB-D dataset:

frl/desk fr2/xyz fr3/office avg.rank

» Direct Methods (DVO-SLAM, BAD-SLAM) BundleFusion [1] 1.6(1) T1.1(3) 224 2.7 (2)
. . DVO SLAM [30] 2.1(5) 1.8(6) 3.5(8) 6.3(6)
surpassed by indirect methods (ORB-SLAM 2) ElasticFusion [00] 2.0(4) 1.1(3) 17(2) 3.0 4)
° H . . Kintinuous [65] 3.7(8) 2.9(9) 3.0(6) 7.7 (8)
Assumption: Worse performance due to: MRSV Ian  gai0 208 42/ &30
« Rolling shutter ORB-SLAM2 [11] 1.6(1) 0.4(1) 10(1) 1L0(D

. PSM SLAM [70] 1.6 - 3.1 -
« Asynchronous Frames (RGB images and RGB-D SLAM [9] 23 (6) 08(2) 32(7) 5.0(5
VoxelHashing [47] 2.3 (6) 22(8) 2.3(5) 6.3(6)

Depth map) Ours (ixed int) 3.6 12 25

Ours 17(3) 113 1.7(2) 27(2)
Table 2. ATE RMSE results in cm on TUM RGB-D datasets (rank
in brackets). Ours achieves the second best average rank af-
« =>To what extend is BAD-SLAM affected by ter ORB-SLAM?2 and alongside BundleFusion. Results for other
distortions? methods are as reported in [7], [70] and [44]. Our results without
intrinsics and depth deformation optimization are clearly worse,
showing that this is necessary for these datasets.

« Badly calibrated camera intrinsics
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Interim report: How badly is BAD-SLAM affected?

Benchmark with synthetic Dataset:
» 4 Datasets out of TUM RGB-D dataset

 Clean
. AsynChronOUS clean async rs async & rs
avg. med. avg. med. avg. med. avg. med.
* Rolling Shutter BundicFusion [7] | 0.34 022 1.10 1.14 1.10 1.02 | 1.48 1.40
) DVO SLAM [30] | 032 023 233 0.72 5.10 1.37 | 494 1.39
» Asynchronous + Rolling Shutter ElasticFusion [69] = L.I11 090 198 1.17 270 1.77  3.19 2.52
ORB-SLAM2 [44] = 047 030 0.60 0.40 3.25 1.57  3.49 1.55
Ours 0.15 0.02 040 0.21 0.99 0.87  1.01 0.98

 Observation:
« effects degrade SLAM results
* Not all effects have been modelled

« => Do we solve this issue by modelling every
effect in Software?
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thetic datasets per category. Asynchronous RGB-D frames (async)
and rolling shutter (rs) both worsen the results.
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Second Contribution: Better Datasets

No, due to: Solution:

High implementation effort Solve issue with better hardware.
High computational demand => high runtimes

Possibility of degenerate cases
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Second Contribution: Better Datasets

« Synchronized, Global shutter RGB and depth
sensors

* Infrared Emitter

« Vicon Markers and Vicon System for trajectory
tracking (ground truth)

» Well calibrated System

« Optional camera intrinsics optimization not
necessary
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Second Contribution: New Benchmark

« 61 training sets (with ground truth)
« 35 test sets (non-public ground truth)
* Online Leaderboard

« Ground truth:
« Majority with Vicon System
*  Minority with Structure-from-Maotion
« E.g. outdoor scenes (Bench)

Figure 1. Scene from our benchmark reconstructed in real-time
with ca. 335’000 surfels, with keyframes and estimated trajectory.
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Conclusion: Final Results

Training Test

BundleFusion
DVO SLAM

- ElasticFusion
ORB-SLAM2
BAD SLAM

[

#successful runs
#successful runs

SE3 ATE RMSE [cm] SE3 ATE RMSE [cm]
Figure 6. Evaluation on our benchmark’s training and test datasets.
For a given threshold on the ATE RMSE (x-axis), the graphs show
the number of datasets for which the method has a smaller error.

Easy Medium Hard SfM 10.0

BAD SLAM 75
BundleFusion

DVO SLAM 5.0

ElasticFusion 25
ORB-SLAM2

0.0

Easy Medium Hard 10.0

BAD SLAM 7.5
BundleFusion

DVO SLAM 5.0

ElasticFusion 2.5

ORB-SLAM2 0.0

Figure 7. Complete SE(3) ATE RMSE evaluation results on the
training (top) and test (bottom) datasets of our benchmark in cm.
Each column visualizes the results for one dataset. We show three
runs per dataset for non-deterministic methods.
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TUTI
Conclusion: What does BAD-SLAM show us?

1. Anew fast direct bundle adjustment formulation

2. Direct methods are negatively affected by rolling shutter, asynchronous RGB and Depth measurements,
calibration errors

3. Direct methods may perform significantly better on well calibrated Dataset than popularly chosen
indirect methods (ORB-SLAM2)

4. Existing datasets only give partial picture of SLAM algorithm performance
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Thank you for your attention! ©
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Cost function — Depth error

d? _ _
Op = 5ﬁ |(Tgk ns)T 7Tk(Tgk Ps
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