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On Joint Estimation of Pose, Geometry and svBRDF
from a Handheld Scanner

• by Carolin Schmitt, Simon Donne, Gernot Riegler, Vladlen
Koltun, Andreas Geiger
• Presented at CVPR 2020, published in the proceedings
• https://openaccess.thecvf.com/content_CVPR
_2020/html/Schmitt_On_Joint_Estimation_of_Pose
_Geometry_and_svBRDF_From_a_CVPR_2020_paper.html
• Video demonstration:
http://www.youtube.com/watch?v=_xxSQPD9qU0
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What’s the aim of the method?
“On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner”

• Pose: Camera Rotation/Translation

• Geometry: Geometry of the Scene
• svBRDR: spatially varying Bidirectional Reflectance Distribution Function

(instead of “just” colour)
• Joint Estimation: Joint Optimisation
• from a Handheld Scanner: previous work assumed multiple images from the

same position, i.e. a tripod / camera rig
Additional Assumptions
• RGBD camera
• Exactly one point light source in each input image
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Model

X = {{(zp, np, fp)}P
p=1, {πi}N

i=2}

• N undistorted images from a pinhole camera with vignetting removed; the first is called reference view
• πi : projective mapping from view i back to the reference view
• zp: depth for every pixel
• np: normals for every pixel
• fp: material for every pixel
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Representation of Geometry and Depth
Surface points are defined as depth Z1 = {zp} of pixels p

• The depth is always given in the reference view

• Can derive the 3D point positions by doing an inverse projection
• Simpler than having “real” 3D points
• Only represents what is visible from the reference view

We also have normals N1 = {np} in the reference view
• Represented as unit vectors
• Rotated slightly in each optimisation step
• Integrate into depth
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svBRDF
Models the fraction of light reflected from direction ωin into direction ωout at a pixel p:

fp(np,ω
in,ωout) = dp + sp

D(rp)G(np,ω
in,ωout, rp)

π(np · ωin)(np · ωout)

• Functions D and G are called microfacet slope distribution and geometric attenuation factor

• 3 parameters:
− dp ∈ R3 is the diffuse albedo
− sp ∈ R3 the specular albedo
− rp ∈ R the roughness of the surface

→ These are optimised as part of the method
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Specular Materials
In practice, the paper takes some simplifying assumptions:

• exactly one point light
• Fresnel effect cannot occur with only one light source which is close to the camera
• (sp, rp) can vary only between a few specular base materials, with weights αt

p ∈ [0, 1]:(
sp

rp

)
=

T∑
t=1

αt
p

(
st

rt

)
• T ≤ 3 is enough for all except very complex objects
• svBRDF is fully determined by
− diffuse and specular material weights: {dp,αp}P

p=1

− the specular materials: {(sp, rp)}T
t=1

• only these are optimised
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Optimisation: Basic Idea

• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)

• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints

• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:

• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency

• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency

• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility

• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness

• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Optimisation: Basic Idea
• Don’t try to derive new types of information from input (e.g. via 8-point algorithm)
• Instead take rough guesses as input, and gradually optimise these within a set of constraints
• Use established optimisation methods

Constraints:
• Photoconsistency
• Geometric Consistency
• Depth Compatibility
• Normal Smoothness
• Material Smoothness

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 7



Technical University of Munich

Constraints: Photoconsistency

ψP(X ) =
1
N

∑
i

∑
p

∥∥∥∥∥ϕi
p

[
Ii (πi(xp))− fp

(
np,ω

in
i (xp),wout

i (xp)
)
·

ai(xp)nT
p ω

in
i (xp)

di(xp)2 L

]∥∥∥∥∥
1

• Does the model fit the observations Ii in each pixel p?
• Takes the difference of observation and rendering output
• ϕi

p = 1 iff p contains an observation and is visible in image i
• fp

(
np,ω

in
i (xp),wout

i (xp)
)

is the svBRDF term assuming a single point light

• ai(xp)nT
p ω

in
i (xp)

di(xp)2 L gives the intesity of that point light
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Constraints: Geometric Consistency

ψG(X ) = −
∑

p

~nT
p

( ∂zp

∂x ×
∂zp

∂y

‖∂zp

∂x ×
∂zp

∂y ‖2

)
∂zp

∂x
∝
[
1, 0, ~∇Z1(π1(~xp))

T [f/zp, 0]T
]T

• Geometry and Normals must be consistent

• Normals {np} must integrate to the depth map {zp}
• Align np and the cross product of surface tangents by minimising the scalar product
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Technical University of Munich

Constraints: Depth Compatibility

ψD(X ) =
∑

p

‖zp −Z1(up, vp)‖2
2

• Regularise against depth measurements in the reference view
• Before optimisation, several measured depth maps can be integrated into the reference view
• Final result will improve on the bare measurements through shading cues
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Technical University of Munich

Constraints: Normal Smoothness

ψN (X ) =
∑
p∼q

‖np − nq‖2
2

• Standard smoothness term to encourage smooth surfaces
• Minimise the difference of normals of adjacent pixels p ∼ q
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Technical University of Munich

Constraints: Material Smoothness

ψM(X ) =
∑

p

∥∥∥∥∥αp −
∑

q αqwqkq,p∑
q qqkp,q

∥∥∥∥∥
1

−
∑

p

∥∥∥∥∥αp −
1
P

∑
q

αq

∥∥∥∥∥
1

• Only a few pixel will actually contain specular information to reconstruct
• Assumption: areas with similar diffuse properties have similar specular properties
• Therefore regularise across regions with similar appearance
• kp,q is a Gaussian kernel
• wq = maxi acos−1(nq · hi

q) determines if q is a highlight in some input image
• Also encourage material sparsity: maximise distance from the average weights

(second term)
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Technical University of Munich

Optimisation: Putting it all together

X ? = argmin
X

ψP + ψD + ψN + ψM

• Implemented with PyTorch, code runs on the GPU (with cuda)
• Optimisation with ADAM (Adaptive Moment Estimation)
• Code available under the MIT licence: https://github.com/autonomousvision/handheld_svbrdf_geometry
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Technical University of Munich

Initialisation

X = {{(zp, np, fp)}P
p=1, {πi}N

i=2}

• 45 images per object, in a 30◦ cone around the reference view
− Taken in sensor rig with LED point lights, ambient light negligible
− Calibrated cameras, distortion and vignetting are removed
• Camera poses: reconstructed using tracking tags
• Geometry/depth: input from RGBD images, integrated with volumetric fusion
• Normals and Albedo: can be recovered in closed form in a Lambertian scene;

specularity outliers are rejected using RANSAC
• Number of Base Materials: optimise for T ∈ {1, 2, 3}, choose model with the

smallest photometric error
• Specular BRDF: set each pixel to a uniform mix of the base materials
• Specular Base Materials: initialise specularity differently to diversify the output;

roughness is set to 0.1 for all
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Technical University of Munich

Results

• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction

• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well

• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results

• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images

• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps

• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

Results
• Slight misalignments of camera poses cause significant errors in geometry and especially specularity reconstruction
• Material Segmentation term is crucial, and works well
• Splitting normals and depth leads to better results
• The Methods degrades gracefully with fewer input images
• Results are robust against fewer input depth maps
• Optimisation leads to super-resolution details

Matthias Stübinger | On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner 15



Technical University of Munich

How to continue?

• Use a different geometry representation?
• Allow for more point lights?
• Use SfM for initialisation instead of a depth sensor?

Questions!
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