

Learning For Self-Driving Cars and Intelligent Systems

Practical Course

Qadeer Khan, Mariia Gladkova

Winter Semester 2021

Course webpage:

https://vision.in.tum.de/teaching/ws2021/intellisys_ws2021

Structure

- Masters practical course
- Data modalities: images, GNSS, IMU, point clouds, sets, graphs etc.
- Programming assignments in the initial weeks
- Research oriented projects
- max. 2 persons per each group
- Dynamic research goals
- One-on-one meetings with supervisors for updates and resolving issues
- Final Presentations
- Weekly summaries of the work progress
- Tuesday, 3-5 pm [Onsite or online, TBD]
- You will be provided remote access to compute resources via ssh for this course.
- Final Evaluation will be a combination of the programming assignments, weekly/final reports, presentation, viva, project code and results etc.

Prerequisites

- Proficient in python programming
- Familiar with version control (git)
- Comfortable with DL frameworks: PyTorch, Tensorflow etc.
- Good knowledge of basic mathematics, linear algebra, probability, numerics, analysis etc.
- Participation in at least one of the offered deep learning lectures at TUM, For e.g. [1,2,3 ...]
- Or participation in at least one of **Multi-View Geometry** courses / labs, e.g. [1, 2, 3...]
- We may consider other courses offered outside of TUM if the contents match with the example courses referenced above. Please highlight the content of those courses in your application.

Application

- Assignement to the course done via the matching system: https://matching.in.tum.de/
- Select your preference of the lab course between 15 July to 20 July on the system
- Application documents to be sent separately
- Send your CV and Transcripts by 20 July 2021 to: intellisys-ws21.vision.in@tum.de Please see the email format on the next slide
- We can only consider candidates who applied to the matching system AND sent their application documents

Application Email Format

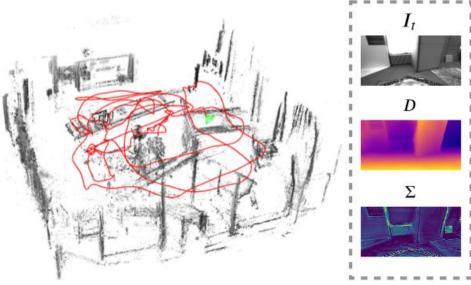
In order to easily evaluate your profile for matching, we ask you to follow the format below:

Subject: Application [Your Matriculation Number]

In the body please give at least the following details:

- Matriculation #:
- Name:
- Name of Degree:
- Masters Semester #:
- Average Grade:
 - o Bachelor:
 - Master (For the previous semester, if available)
- List of Relevant courses taken with grade

Please remember to also attach your CV and transcripts(Bachelor + Master) with the email. Feel free to share any additional documents, information (for eg. link to git, past research projects) that could support your application. *Optional*: If you also have a project suggestion matching the theme of the lab course, please briefly describe.

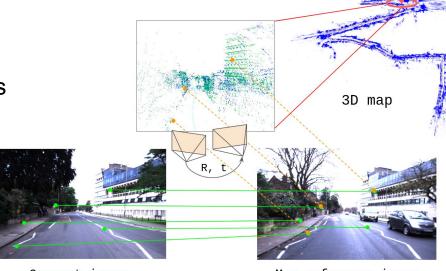


- Practical project experience with real-world problems
- Novel application-oriented research challenges
- Project Assignment to be done after the initial weeks of programming tasks
- Projects specifics will be decided later
- However, if you have project proposals prior to beginning of the semester. It may be considered
- Nevertheless, some general research areas can be found in the next slides

- SLAM
 - Deep depth **D**, deep pose and deep uncertainty **Σ** based on a single view **I**, [1]
- 3D reconstruction
 - Dense reconstruction using a deep neural network [2]

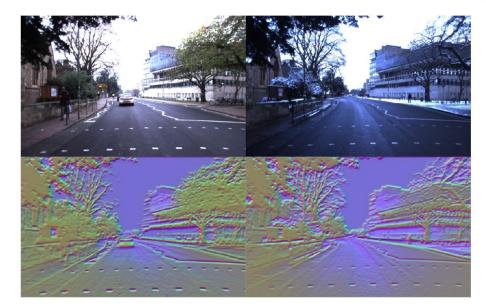
Reference (top):

https://vision.in.tum.de/research/vslam/d3vo


Reference (left):

https://vision.in.tum.de/research/monorec

Accessed on 12.07.2021



- Perception for self-driving cars
- Scene understanding
- Global localization

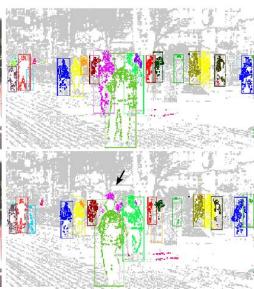
Current image

Map reference image

Reference (top):

https://vision.in.tum.de/research/vslam/tirdso

Reference (left):


https://vision.in.tum.de/research/vslam/gn-net

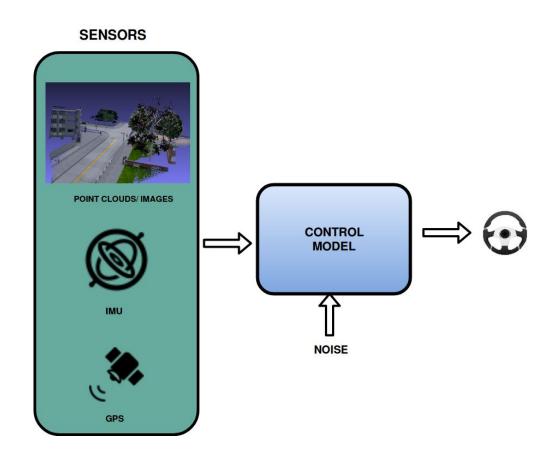
Accessed on: 12.07.2021

- Object detection & tracking
- Dynamic object segmentation

(a) Using Multi-view Geometry.

(b) Using Deep Learning.

(c) Using Geometry and Deep Learning.


Reference (top):

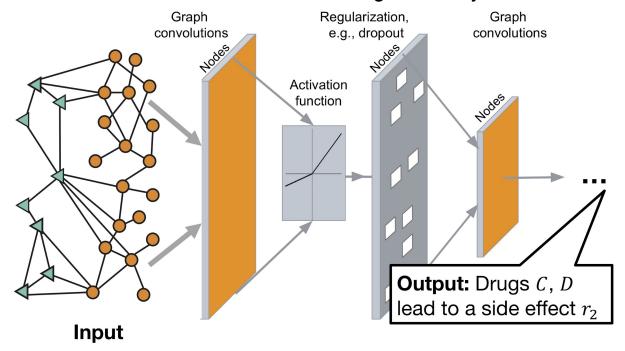
https://ps.is.mpg.de/uploads_file/attachment/attachment/468/motion_segmentation_tracking_clustering.pdf Reference (bottom): https://arxiv.org/abs/1806.05620

Accessed on 12.07.2021

- Robot control
 - Embodied agents (Next slide)
 - o Robustness to noisy data
 - Multiple Input Modalities

- Testing control algorithms on embodied agents
- Interaction with the environment
- Supervised, self-supervised, reinforcement learning

Visual Odometry Trajectory


Online Evaluation

Reference: https://arxiv.org/pdf/2103.11204.pdf,

Accessed on 13.07.2021

- Learning on Graphical Networks,
 - Social Networks, Internet, Molecules /Drug discovery etc.

Reference: http://snap.stanford.edu/decagon/decagon-overview.png

Accessed on: 13.07.2021

QUESTIONS