

Seminar: An Overview of Methods for Accurate Geometry Reconstruction

Mohammed Brahimi, Lu Sang Computer Vision Group Technical University of Munich

Tur Uhrenturm

How can I access these slides?

- Option 1 (preferred): seminar web page
 - https://vision.in.tum.de/teaching/ws2021/seminar_accurate3d
 - Password for material page: ws21-3dgeometry
 - Material page will go online after this pre-meeting
- Option 2: contact organizers
 - 3dgeometry-ws21@vision.in.tum.de
 - Only use this option if you forgot the password

Outline

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Mono-view approaches
 - Multi-view approaches
- Questions

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- $\circ~$ Possible Papers
 - Mono-view approaches
 - Multi-view approaches
- Questions

How is the seminar organized?

- Seminar meetings: Talks and discussion
 - Day: Monday, October 4th and Tuesday, October 5th
 - Time: tba
 - Location: tba
 - In case of special circumstances please let us know and we will find a solution
 - Each day will consist of 4 or 5 talks which are held in English
 - Attendance is mandatory!

How is the seminar organized?

- Talk preparation / contact with supervisor
 - Read through your paper and write down what you don't understand
 - Three or four weeks before talk: meet supervisor for questions (optional, but recommended)
 - One week before talk: meet supervisor to go through slides (optional, but recommended)
 - Before October 4th: submit your slides via submission system (mandatory)
 - Before October 25th: submit your report via submission system (mandatory)

What about the presentation?

- General set-up:
 - Duration: 20–25 minutes talk + 10–15 minutes discussion
 - Make sure to finish on time not too early and not too late!
 - Rule of thumb: 1–2 minutes per slide \rightarrow 10–20 slides
 - Do not put too much information on one slide!
- Recommended structure (talk):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary

What about the discussion after each talk?

- Discussion afterwards will influence your grade
- Ask questions!
- There are **no** stupid questions!

What about the final report?

- General set-up:
 - Use LATEX template provided on web page
 - Length: 3-4 pages
 - Upload final report as pdf via submission system
 - Submission deadline: 25.10.2021
- Recommended structure (main text only):
 - Introduction
 - Method description
 - Experiments and results
 - Discussion of results
 - Summary

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Mono-view approaches
 - Multi-view approaches
- Questions

How do you register for the seminar?

- Step 1: Official registration via TUM matching system
 - Go to https://matching.in.tum.de
 - Register for seminar with the title An Overview of Methods for Accurate Geometry Reconstruction
- Step 2: Personal registration via email
 - In the list of papers on the web page, select your three favorites
 - Write an email ranking these three favorites to the seminar email address
 - Email subject: "[3DGEOMETRY] application [your name]"
 - Include information about related lectures / courses you have taken so far.
 - We do **not** need your CV or a motivation letter!
 - Registrations without email / emails with missing information will be ignored!
- (NEW!!) Deadline for matching system: 20.07.2021, for email: 24.07.2021

How do you register for the seminar?

Example registration email:

То	3dgeometry-ws21@vision.tum.de	
<u>S</u> ubject	Subject [3DGEOMETRY]application[your name]	
Paragraph 🖌 Va	riable Width	~ - A A A A A
Hi Lu and Mohammed,		
I would like to present one of the following papers:		
1. paper A		
2. paper B		
3. paper C		
I have taken these related courses:		
- computer vision 2[ss20]		
- nonlinear optimization for computer vision [ws2021]		
Best,		

ПП

How do we select candidates and assign papers?

- Candidate selection
 - Only students registered in the matching system AND emails containing all required information will be considered
 - Among students meeting the formal criteria, selection will be random
 - Note that if you have not taken any related course, you must be willing to invest a lot of work to learn the required basics
 - You will get notified by the matching system about the decision.
- Paper assignment
 - Papers are assigned after the participant list is finalized
 - We give our best to accommodate your preference list in the assignment

Outline

- General Information
 - $\circ~$ About the Seminar
 - Registration
- Possible Papers
 - Mono-view approaches
 - Multi-view approaches
- Questions

Sparse Photometric 3D Face Reconstruction Guided by Morphable Models

Xuan Cao et al. CVPR 2018

 A highly accurate 3D face is generated by solving an inverse rendering problem with the help of a 3D morphable model, using few input images taken by a fix camera, under unknown changing lighting.

ПП

Variational Uncalibrated Photometric Stereo under General Lighting

- Fundamental paper that uses a simple photometric stereo method to get accurate 3d geometry
- Traditional method with elegant optimization technique

ПΠ

Fight ill-posedness with ill-posedness: Single-shot variational depth super-resolution from shading

Björn Haefner et al. CVPR 2018

Input: one low-resolution depth map and its companion high-resolution image

Our result

- introduction paper to shape from shading method
- traditional method to achieve good results

RGBD-Fusion: Real-Time High Precision Depth Recovery

Roy Or - El et al. CVPR 2015

(b) Baseball Cap

- real time capable
- different approach to achieve accurate geometry reconstruction

Outline

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Mono-view approaches
 - Multi-view approaches
- Questions

Combining Depth Fusion and Photometric Stereo for Fine-Detailed 3D Models

Erik Bylow et al. SCIA 2019

- combine photometic stereo with SDF method
- a full 3d detailed model reconstruction

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall et al. ECCV 2020

- deep learning based approach
- very popular and high cited paper

Multiview Photometric Stereo using Planar Mesh Parameterization

Jaesik Park et al. ICCV 2013

Initial 3D reconstruction

Refined result

- Many images of an object are taken by several fix cameras, under unknown changing lighting.
- By using the input images and an initial coarse mesh obtained with an existing multiview technique, a displacement map is optimized in order to produce a detailed mesh.

Mohammed Brahimi, Lu Sang (TUM) | Computer Vision Group | 12, July, 2021

Multi-view Photometric Stereo with Spatially Varying Isotropic Materials

Zhenglong Zhou et al. CVPR 2013

Initial sparse point cloud

Densified point cloud

Final colored 3D model

- A sparse point cloud is densified using photometric cues to obtain a high quality mesh.
- Material is also estimated based on the acquired geometry.

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Lior Yariv et al. NeurIPS 2020

- One RGB image is captured for many known camera positions with one unique lighting.
- Two MLPs representing respectively the SDF and the appearance are optimized jointly to obtain a good 3D mesh and rendering from novel viewpoints with the same illumination.

ПΠ

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting

Kai Zhang et al. CVPR 2021

• The appearance is decoupled into lighting and material, which are optimized jointly with the geometry.

Mohammed Brahimi, Lu Sang (TUM) | Computer Vision Group | 12, July, 2021

Questions?

Reminder:

- Web page: https://vision.in.tum.de/teaching/ws2021/seminar_accurate3d
- Password: ws21-3dgeometry
- Contact: 3dgeometry-ws21@vision.in.tum.de