
The Evolution of Motion Estimation and Real-time 3D
Reconstruction

Lukas Koestler & Simon Weber
Nov. 23, 2021

Chair of Computer Vision & Artificial Intelligence, Technical University of Munich



This lecture should introduce you to the fundamentals of Motion Estimation and
Real-time 3D Reconstruction. These are

• Problem Description
• Terminology and System Design
• Mathematical Notation and Concepts

You can cite this lecture within your presentation and assume that students know
its content.
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1. Problem Description



Motivation

We humans can estimate the motion as well as the geometry from a monocular
video alone.1

Developing algorithms for real-time motion estimation and 3D reconstruction can
endow computers with this fundamental skill.

1You can convince yourself of this fact by watching a video on a screen. In the physical world
humans also use inertial data from the vestibular system (ear), stereo data from both eyes, etc. for
motion estimation.
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https://youtu.be/GnuQzP3gty4&t=2m10s


Brief History

The notion of perspective projection has its roots among the ancient Greeks (Euclid
of Alexandria, ca. 400 B.C.). (Cremers 2019)

The first work on the problem of multiple view geometry was that of Erwin Kruppa
(Kruppa 1913) who showed that two views of five points are sufficient to determine
the motion between the two views and the 3D locations of the points.

Visual SLAM/Odometry dates back to at least “Obstacle Avoidance and Navigation
in the Real World by a Seeing Robot Rover” (Moravec 1980).
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2. Terminology and System Design



Sensors

Different algorithms can be distinguished based on the sensor-data used:

• Camera: Visual-SLAM (V-SLAM)
• Camera + Inertial Measurement Unit (IMU): Visual-Inertial SLAM (VI-SLAM)
• Camera + Depth Camera (RGB-D Camera): RGB-D SLAM
• Type of Camera: Monocular or Stereo SLAM

Combination of the above and further sensors, e.g. LiDAR, are possible.
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Output

Different algorithms can be distinguished based on the output they provide. The
nomenclature is quite ambiguous:

• Odometry/Tracking: Provides the motion of the camera, without global cor-
rection. If the camera moves within a constrained environment (room) the
trajectory will drift away over time.

• SLAM: Provides the motion of the camera, with global correction, as well as
the geometry (e.g. a point cloud). The correction w.r.t. the map prohibits the
position to drift over time in a constrained environment.

• 3D Reconstruction: Provides motion and geometry and the focus lies on the
reconstructed geometry.
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Keyframes

Typical cameras operate at 20–30 frames per second (FPS), which results in ca. 30
milliseconds (ms) per frame. The information in two temporally adjacent frames is
highly redundant.

Therefore, many algorithms operate on a sparser set of frames called keyframes,
e.g. every 10th frame. The exact keyframe management is a crucial part of every
SLAM system.

Every frame can still be used for short-term camera tracking. The frontend pro-
cesses every frame and selects keyframes and the backend optimizes the keyframe
poses.
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Filtering & Optimization

Typically, a SLAM algorithm estimates the trajectory (keyframe poses) as-well-as
landmarks, e.g. the 3D locations of feature points.

• Filtering: The algorithm has a current state of the poses & landmarks and
probabilistically updates the state with the current information by using e.g.
the Kalman Filter (Kalman 1960).

• Bundle Adjustment: Optimizing the poses and landmark positions simultane-
ously using e.g. the Gauss-Newton algorithm.

• Pose Graph Optimization: Optimizing only the poses but not the landmark
positions.
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Global Scale

For monocular cameras the global scale of the reconstructed scene in unobserv-
able, i.e. even a perfect algorithm using perfect data cannot produce a metrically
scaled trajectory and 3D reconstruction.2

The scale becomes observable by using additional sensors, e.g. an IMU or a depth
camera. The scale can also be obtained by using prior information about the world,
e.g. that a room is generally 2.5meters high – this prior information can be encoded
in a neural network.

2You can convince yourself of this fact by considering a camera that is moving in a house, or a
puppet house. If the puppet house were perfect, there is no way of knowing in which of the two the
camera is.
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Feature Points

Many algorithms abstract the image into a set of feature points with descriptors,
which are used to match the feature points.

This approach has the advantage that usingmatched features, the problem of SLAM
is ”purely geometrical”, however, erroneous matches can be hard to deal with after
the matching.

Figure 1: Correct (green) and erroneous (red) feature matches.
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3. Mathematical Notation and
Concepts



Acknowledgement

This section is inspired by the practical course Vision-based Navigation that was ini-
tially developed by Vladyslav Usenko andwhich we can highly recommend! Ressources:

• The video lectures for Vision-based Navigation3

• The Multiple View Geometry (MVG) lecture4

• The tutorial on SE(3) by Blanco-Claraco5

• GTSAM has a blog-style introduction on Lie groups6

3Demmel et al. 2020.
4Cremers 2019.
5Blanco-Claraco 2021.
6Mattamala 2021.
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3. Mathematical Notation and
Concepts

3.1 Rigid-body Motion



Representations of Rotation

The pose of the camera is comprised of the position and the rotation. The position
can be easily represented by a vector in R3, but representing the rotation is more
challenging.

There are at least the following representations:

• SO(3) matrices
→ Potentially the most used representation in SLAM

• Quaternions
→ Good representation that is used in SLAM

• Euler Angles
→ Hard to combine rotations & gimbal lock
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The Orthogonal Group O(n)

A matrix A ∈ R3×3 is called orthogonal if A−1 = A⊤.

The group
O(n) = {A ∈ R3×3 | A−1 = A⊤}

is called the orthogonal group.

The special orthogonal group

SO(n) = {A ∈ O(n) | det(A) = 1}

is a subgroup of the orthogonal group and is the group of 3-dimensional rotation
matrices.
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Representation of Rigid-body Motion

A rigid body motion gt(x) : R3 → R3 that consists of a rotation R ∈ SO(3) and
translation T ∈ R3 can be written as

gt(x) = Rx+ T .

We can use homogeneous coordinates to simplify the notation

gt(x) =
(
R T
0 1

)(
x
1

)
.

The special Euclidean group

SE(3) =
{(

R T
0 1

)
| R ∈ SO(3), T ∈ R3

}
represents the rigid-body motions in 3D.
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3. Mathematical Notation and
Concepts

3.2 Manifold Optimization



Optimization over Rotations

Generally, the SLAM problem might involve an optimization problem of the form

min
R∈SO(3)

f(R) ,

where f : R3×3 → R is a non-linear function.

Naively, one could consider

min
R∈R3×3

f(R) , s.t. R−1 = R⊤ and det(R) = 1 .

However, the problem has dimension 9 instead of 3 and is a constrained problem,
which is generally harder to solve.

Manifold Optimization to the rescue!
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Manifolds

Informally, a manifold is a space that is not Euclidean, but can locally be repre-
sented by an Euclidean space (= tangent space).

Figure 2: The circle in R2 with its tangent space at the point (1, 0)⊤.

We can locally consider the optimization problem on the tangent space to obtain
an update and then map back to the manifold. (Absil et al. 2009)
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The Lie Group SO(3)

We are specifically interested in the group of rotation matrices SO(3). Because
SO(3) is also a manifold it is called a Lie group.

Figure 3: The mapping from the Lie algebra (=tangent space) to the Lie group is called the
exponential map. Its inverse is the logarithm.
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The Lie Algebra so(3)

The Lie algebra so(3) is the tangent space at the identity of the group SO(3) and it
is comprised of the skew-symmetric matrices

so(3) = {ŵ ∈ R3×3|ŵ⊤ = −ŵ} .

For each skew-symmetric matrix ŵ ∈ R3×3 there exists w ∈ R3:

ŵ y = w× y ∀y ∈ R3 , ŵ =

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 .
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The Exponential Map

The exponential map exp : so(3) → SO(3) is given by

R = exp(ŵ) =
∞∑
n=0

ŵn
n! .

Here, exp is the matrix exponential which is implemented in many linear algebra
libraries. For exp : so(3) → SO(3) there exists the Rodrigues’ Formula:

exp(ŵ) = I+ sin(|w|)
|w| ŵ+

1− cos(|w|)
|w|2 ŵ2 .
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The Logarithm

The logarithm log : SO(3) → so(3) is given by ŵ = log(R) with

|w| = cos−1
(
trace(R)− 1

2

)
,w =

|w|
2 sin(|w|)

r32 − r23
r13 − r31
r21 − r12

 ,

for R ̸= I and ŵ = 0 for R = I.

The above statement says: Any rotation R ∈ SO(3) can be represented by rotating
by an angle |w| around an axis w/|w| as defined above. This representation is called
angle-axis representation and w ∈ R3 a rotation vector.
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Optimization over SO(3) using so(3)

Let Rk be the current iterate for the optimization problem

min
R∈SO(3)

f(R) .

We consider the increment ŵ ∈ so(3) s.t. Rk+1 = exp(ŵ)Rk and its coordinate repre-
sentation w ∈ R3. For gradient descent, we compute

∆w = −η
∂f(exp(ŵ)Rk)

∂w .

In w ∈ R3 we have an unconstrained optimization problem with a minimal number
of parameters!

For more details, e.g. how to compute the gradient, please consider Cremers 2019 or Demmel
et al. 2020.
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3. Mathematical Notation and
Concepts

3.3 Camera Models



Pinhole Camera

Figure 4: The pinhole camera is parametrized by the focal lengths fx, fy and the optical
center cx, cy.

A 3D point (x, y, z)⊤ is projected to the pixel coordinates (u, v)⊤

u = fx
x
z + cx , v = fy

y
z + cy .
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Distortion

The pinhole camera model is often, especially for wide-angle lenses, not sufficient
to model the physics of the camera. Often images are undistorted beforehand.

Figure 5: A bookshelf w/o distortion (left) and w/ distortion (right).
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3. Mathematical Notation and
Concepts

3.4 Optimization



Energy & Residuals

Many SLAM problems can be formulated as a least squares optimization problem

min
x∈X

E(x) = min
x∈X

1
2
∑
k
rk(x)⊤rk(x) ,

with energy E : X→ R and residuals rk : X→ Rok .

Kinds of residuals:

• Projective: (u(x), v(x))⊤ − (umeasured, vmeasured)⊤

• Priors on motion, camera parameters, …
• Based on depth measurements
• …
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Least Squares

By using manifold optimization, the problem can usually be transformed to

min
x∈Rd

1
2
∑
k
rk(x)⊤rk(x) ,

a non-linear, un-constrained optimization problem.

In simple cases, one can solve
∂E(x)
∂x = 0

analytically. Otherwise, we use iterative methods starting at x0

• At iteration n find an increment ∆xn = argmin∆x E(xn +∆x)
• If the (change in) error is small enough stop
• If not, set xn+1 = xn +∆xn and continue
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Gradient Descent

Use a first order Taylor expansion of the energy
E(x+∆x) = E(x) + G(x)∆x+ O(∥∆x∥2) and the update step

∆x = −ηG(x) .

Figure 6: Slow convergence due to ”zig-zag” pattern.
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Second Order Methods

Use a second order Taylor expansion of the energy

E(x+∆x) = E(x) + G(x)∆x+ 1
2∆x

⊤H(x)∆x︸ ︷︷ ︸
Ẽ(∆x;x)

+O(∥∆x∥3) .

Setting ∂∆xẼ(∆x; x) = 0 gives the update step

∆x = −H−1(x)G(x) .

This is called Newton’s method. The convergence is faster than for first order meth-
ods, but computing H(x)might be hard. Can we avoid computing H(x) and keep the
convergence speed?
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Gauss-Newton Method

Key idea: Utilize the least-squares structure of E(x) by applying the Taylor expan-
sion to the residuals

E(x+∆x) = 1
2r(x+∆x)⊤r(x+∆x)

=
1
2
(
r(x) + J(x)∆x+ O(∥∆x∥2)

)⊤ (r(x) + J(x)∆x+ O(∥∆x∥2)
)

= E(x) + r(x)⊤J(x)∆x+ 1
2∆x

⊤J(x)⊤J(x)∆x+ O(∥∆x∥2)

We obtain the update step

∆x = −(J(x)⊤J(x))−1J(x)⊤r(x) .

The Hessian H(x) is approximated by J(x)⊤J(x), which is only positive semi-definite
and thus the inversion might be undefined.
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Levenberg-Marquardt Method

Key idea: The Taylor approximation is only valid in a trust region. Evaluate the
approximation by

ρ =
real descent

predicted descent =
r(x+∆x)− r(x)

J(x)∆x .

Increase (ρ large) or decrease (ρ small) the region. Use regularization to obtain an
increment ”within” the region

E(x+∆x) = 1
2r(x+∆x)⊤r(x+∆x) + λ∥∆x∥2 .

Choose λ based on ρ. For λ = 0 LM becomes GN, for λ → ∞ LM becomes gradient
descent.
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Optimization Summary

• GN and LM are used most often in SLAM
• For all iterative methods the initialization is important
• More methods (semi-definite relaxation, dog-leg, …) exist and might be advan-
tageous for specific problems

• Sometimes custom implementations might be more efficient than libraries
(GTSAM, Ceres, g2o, …)

• SLAM-specific tricks exist, e.g. null-space handling, and are sometimes not
well-documented in the literature

• Insight into the SLAM problem, e.g. residual definition, can make the resulting
optimization problem much easier
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Figure References

• Figure 1: Demmel et al. 2020
• Figure 2: Own
• Figure 3: Cremers 2019
• Figure 4: Demmel et al. 2020
• Figure 5: Cremers 2019
• Figure 6: Demmel et al. 2020
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Hints

• If one of the web pages mentioned should not be available anymore you can
usually find it saved in the wayback machine https://web.archive.org/.
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https://web.archive.org/
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