Practical Course: Vision Based Navigation

Lecture 1: Introduction,
3D Geometry and Lie Groups

Jason Chui, Simon Klenk
Prof. Dr. Daniel Cremers

Version: 22.10.2021

Introduction

Applications of Navigation Algorithms

Sensors for Navigation TUm

- Sensor provide the way to measure the state of the environment
 Interoceptive sensors: accelerometer, gyroscope ...
- Exteroceptive sensors: camera, laser rangefinder, GPS ...

Benefits of Cameras TUm

* Cheap

* Low power

* Lightweight

* Widely commercially available
» Passive (no interference)

* Very similar to human sensors

Vestibulo—ocular reflex Source: Wikipedia

Types of cameras

- Cameras
« Monocular
- Stereo
- RGB-D
« Event camera,

Ambiguity in mono vision: small + close or large + far away?

Monocular camera

Stereo camera

RGB-D (depth) camera

Stereo Cameras TUTI

Moving stereo: disparity can be estimated in the motion

Content of the Practical Course TUTI

You will implement three main components distributed in 5 exercises:
« Camera Calibration

 Structure from Motion (SfM)

* Visual Odometry (VO)

Implementation is done using:

e C++

 Eigen for linear algebra

« Sophus for Lie groups

* OpenGV for multiple view geometry algorithms

« Ceres for optimisation

« Pangolin for visualisation

» Git

« Supported OS: Ubuntu 18.04, Mac OS >= 10.14

The code is optimised for easy understanding and prototyping. We rely on Ceres auto-differentiation
to compute Jacobians (slower than analytical Jacobians, but much lower development efforts).

Camera Calibration

Structure from Motion (SFM)

ARl EEARARANAN

Snavely N, Seitz SM, Szeliski R. Photo tourism: exploring photo collections in 3D. INACM Siggraph 2006 Papers 2006 Jul 1 (pp. 835-846).

Agarwal S, Snavely N, Seitz SM, Szeliski R. Bundle adjustment in the large. In European conference on computer vision 2010 Sep 5 (pp. 29-42). Springer, Berlin, Heidelberg.

10

What You Will Implement (SFM)

[]show_extra_options De O cor!
show_frame1 my: matc] i ! ‘ D
by) ° . N o 1 (o]
[show_caml 01 14 R - 3 % 3 3 o9 © o0
- —_— goRtains 47 tracdNl obs, D outlier obs, @ zemoved outligls) o4tains s, |0 outlie@obs, @ removed outlEEES
[shou_framez 44 3] .

& o
#hou_camz 1| g @

[]lock_frames
[]show_detected
[]show_matches
[]show_inliers
[]show_tracks
[]show_reprojections
[]show_outlier_obs
[]show_ids
[]next_step_hint
[Rgontinue_next

next_step

detect_keypoints

match_stereo

match_all

build_tracks

init_scene

add_camera

add_landmarks

optimize

remove_outliers

save_map

| |
| |
| |
| |
| |
| |
’ camera_candidates I
I |
| |
| |
[|
| |
| |

load_map

11

Visual Odometry / SLAM TUTI

....... U . . d d . 3 - - . .’
Instituto Universitario de Investigacion
“A° niversiaa Q = enlngenieria de Aragé6n
Q”"~< B El
L_' Zara goza e UniversidadZaragoza

1542

ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras

Raul Mur-Artal and Juan D. Tardés

raulmur@unizar.es tardos@unizar.es

12

What You Will Implement (VO)

[]shou_extra_options

lshow_framei

lshow_cami

lshow_framez

|shou_cam2
[jlock_frames
[]shou_detected
[[Ishow_matches

[]shou_inliers
[]shou_reprojections
[]shou_outlier_obs
[]shou_ids
[;gontinue_next

’ next_step

13

Recommended Literature

Multiple View
Geometry

In computer vision

Richard Hartley and Andrew Zisserman

STATE
ESTIMATION
FOR ROBOTICS

TIMOTHY D.
BARFOOT

Hartley and
Zisserman,
Multiple view
geometry in
computer vision

Timothy Barfoot,
State estimation
for robotics

(Link)

14

http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf

Multiple View Geometry TUm

The Lucas-Kanade Method

The brightness is typically not exactly constant and the velocity
is typically not exactly the same for the local neighborhood.

Lucas and Kanade (1981) therefore compute the best velocity
vector v for the point x by minimizing the least squares errol

E(v) = / [VIx'. t) v+ I,(x’.t)!2 ax’
Jw(x)

Expanding the terms and setting the derivative to zero one
obtains:

with

M = VIVITdx', and q=
W(x) .

If M is invertible, i.e. O%

Multiple View Geometry Lecture
Prof. Dr. Daniel Cremers
TU Munchen

https://www.youtube.com/watch ?v=RDkwkIFGMfo&list=PL.TBd;V_4f{-EJn6udZ34tht9EVIW7lbeo4

Due to the issues with camera exposure we encourage you to download and follow the PDF version of the slides
(link in the description of the corresponding lecture)

15

https://www.youtube.com/watch?v=RDkwklFGMfo&list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4

3D Geometry and Lie Groups

16

Vector Space TLTI

A set V is called a linear or vector space over the field R if it is closed under vector summation

+:VXV->V
and under scalar multiplication

T RXV->V
i.e.av + pv, € V,Vv,v, € V,Va, f € R. With respect to addition (+) it forms a commutative
group (neutral element 0 , inverse element —v). Scalar multiplication respects the structure of
R : a(fv) = (aff)v. Multiplication and addition respect the distributive law:
(a+p)yv=av+pfvanda(v+u) =av+au
Example: V=R",v = (xy, .. .xn)T.

A subset W € V of a vector space V'is called subspace if 0 € W and W is closed under + and -
(for all a € R).

In this course we use Eigen Library to represents vectors and matrices. Please have a look at the
Eigen Quick Reference Guide.

17

https://eigen.tuxfamily.org/dox/group__QuickRefPage.html

Linear Independence and Basis

The spanned subset of a set of vectors § = {v{,...v,} € Vis the
subspace formed by all linear combinations of these vectors:

k
span(S) = {v e V|v = Z a;v; }
i=1

The set S is called linearly independent if:

k
ZaivizO — a; =0Vi
i=1
in other words: if none of the vectors can be expressed as a linear
combination of the remaining vectors. Otherwise the set is called
linearly dependent.

A set of vectors B = {vy,...v,} is called a basis of V if it is linearly

independent and if it spans the vector space V. A basis is a maximal set
of linearly independent vectors.

Right handed

Y

pd

Left handed

18

Inner Product TUTI

On V = R", once can define the canonical inner product for the canonical basis B = I, as
n

T
(eyy =xTy =D x,
i=1
which induces the standard L, norm or Euclidean norm

|x|2=\/xTx=\/x12+...+x,f

Two vectors v and w are orthogonal iff (v, w) = 0.

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;
int main()
{
Vector3d v(1,2,3);
Vector3d w(0,1,2);

cout << "Dot product: " << v.dot(w) << endl;

}

19

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html

Three-dimensional Euclidean Space TUm

The three-dimensional Euclidean space E> consists of all points p € E> characterised by
coordinates

X=X, X,X;) €R’,
such that E> can be identified with R>. That means we talk about points (E>) and coordinates

(R3) as if they were the same thing. Given two points X and Y, one can define a bound vector
as

v=X-YeR’
Considering this vector independent of its base point Y makes it a free vector. The set of free

vectors v € R forms a linear vector space. By defining E> and R>, one can endow E? with a
scalar product, a norm and a metric.

20

Cross Product & Skew-Symmetric Matrices TUm

On R one can define a cross product
(U5 V3 — UV,)
X RIXR?> > R?: uxv=|uv—uy;| € R’
(HiVa — Wby

which is a vector orthogonal to 17 and v. Since u X v = — v X u, the cross product introduces an
orientation. Fixing u induces a linear mapping v — u X v which can be represented by the skew-
symmetric matrix such that ity = u X v :

(
0 —-u; u)
12 = l/t3 O —l/ll = R3X3.
U w0
In turn, every skew symmetric matrix M = — M’ € R? can be identified with a vector u € R?.

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;
int main()
{
Vector3d v(1,2,3);
Vector3d w(0,1,2);

cout << "Cross product:\n" << v.cross(w) << endl;

}
21

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html

Linear Transformation and Matrices TUTI

Linear algebra studies the properties of linear transformations between linear spaces. Since these
can be represented by matrices, linear algebra studies the properties of matrices. A linear

transformation L between two linear spaces V and Wisamap L : V — W such that:
Lx+vy)=Lx)+L(y) Vx,y eV,
L(ax) =alL(x) Vxe V,a € R.
Due to the linearity the action of L on the space V is uniquely defined by its actions on the basis
vectors of V. In the canonical basis {¢;, .. .e,} we have:
L(x)=AxVx eV,
where
A = (L(ey),..L(e))) € R™",
The set of all real m X n matrices is denoted by . (m, n). In the case of m = n, the set

M (m,n) = M (m) forms a ring over the field R, i.e. it is closed under matrix multiplication and
summation.

22

The Linear Groups GL(n) and SL(n) TUTI

There exist certain sets of linear transformations which form a group.
A group is a set G with an operation o : G X G — G such that:

1. closed: g,° 8, € G Vg,8, € G,

2. assoC.:(81°82)°83=81°(8,°83) V81,88 € G,
3. neutral: de € G:eocg=goe=g Vg € G,

4. inverse: g7l € G:gogl =g log=e Vg eG.

Example: All invertible (non-singular) real n X n matrices form a group with respect to matrix
multiplication. This group is called the general linear group GL(n). It consists of all A € ./ (n)
for which

det(A) # 0
All matrices A € GL(n) for which det(A) = 1 for a group called special linear group SL(n). The
inverse of A is also in this group as det(A™!) = det(A)~!

23

Matrix Representation of Groups Ut

A group G has a matrix representation if there exists and injective transformation:
R : G — GL(n),
which preserves the group structure of G, that is inverse and composition are preserved by the map:
R(€) = Ly R(gh) = R(®R(h) Vg,h € G.
Such a map R is called a group homomorphism.

The idea of matrix representations of a group is that they allow to analyse more abstract groups by
looking at the properties of the respective matrix group. Example: The rotations of an object form a
group as there exists a neutral element (no rotation) and an inverse (the inverse rotation) and any
concatenation of rotations is again a rotation (around a different axis). Studying the properties of the
rotation group is easier if rotations are represented by respective matrices.

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
int main()
{
Matrix2d mat;
mat << 1, 2,
3, 4;
Vector2d u(-1,1), v(2,0);
std: :cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u”"T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u”"T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v"T:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat;
std::cout << "Now mat is mat:\n" << mat << std::endl;

https://eigen.tuxfamily.org/dox/namespaceEigen.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1DenseBase.html#ac8952c19644a4ac7e41bea45c19b909c
https://eigen.tuxfamily.org/dox/classEigen_1_1DenseBase.html#ac8952c19644a4ac7e41bea45c19b909c

Representations of Rotation

- Rotation representations
« SO(3) matrices
- Rotation vectors (angle-axis)
 Euler angles
 Quaternions

For more rotation representations and conversions see:

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three dimensions

25

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Euler Angles

Any rotation can be decomposed into three principal rotations

Z A
|
|
|

X

Original First Second Third

- Reasons not to use:
- Hard to combine rotations
- 12 different conventions exist (however yaw-pitch-roll is the most used one)

- Singularities are bad for optimisation.

« Gimbal lock

- Singularity always exist if we want to use 3
parameters to describe rotation

- Degree-of-Freedom is reduced in singular
case

 In yaw-pitch-roll order, when pitch=90
degrees

normal

singular

26

Representations of Rotation

q = qo + q1t + q27 + g3k,

(Unit) Quaternions
- Extended from complex numbers
- Three imaginary and one real part:
- The imaginary parts satisfy:

Reasons to use (
« Require less memory than rotation matrices
- Easy to keep normalized
- Smaller number of operations (but not \

always faster on modern CPUSs)
Operations:

q=qo+ qi+q2j+ g3k, q— [87 ’U]

go T qy = [Sa T Sp, Vg = vb] .

a4y = SaSh — Talph — YalYb — Za<b
+ (Saff;b + TaSp T Yalb — Za yb) i
+ (Sayb — TgZh T YaSp + ’3(1-"171)) /

+ (Sa b + Talyb — YoTa + Za Sb) k.

T
qaqy = [Sasb — UV, Vb, SaUp + SpVq + Vg X vb] .

’

i2=j2=k*=-1
ij =k,ji=—k
jk=1i,kj=—i
ki = j ik = —j

S =4qo € R,’U - [qlaQQaq3]T S Rga

qd, = Sa — Tal — Ya] — Za.k' = [S(u _'Ua]-

qa'=q"/|ql?

kq = [ks, kv].

qa - qp = S4qSp + :I-fa,;:l:b'i + :‘/a,yb.j + 24 Zbk'-

27

Reasons to use Matrix Groups

- Unified representation of many transformations
- rotation SO(3)
- rigid body transformations SE(3)
« scaling Sim(3)
- and others
- Easy concatenation of transformations with matrix multiplication
* No singularities
- Overparametrized, but for optimisation minimal representation of updates can
be used.

28

The Orthogonal Group O(n) TUm

A matrix A € 4 (n) is called orthogonal if it preserves the inner product, i.e:
(Ax, Ay) = (x,y),Vx,y, € R".
The set of all orthogonal matrices forms the orthogonal group O(n), which is a subgroup of
GL(n). For an orthonormal matrix R we have
(Rx,Ry) = x"RTRy = x"y Vx,y, € R".

Therefore we must have R'R = RR! = I, in other words:

O(n)={Re GLn) | R'TR =1},
The above identity shows that for any orthogonal matrix R we have
det(R'R) = (det(R))* = det(/) = 1, which means det(R) € {*1}.

The subgroup of O(n) with det(R) = 1 is called the special orthogonal group SO(n). In
particular SO(3) is the group of all 3-dimensional rotation matrices.

29

The Affine Group A(n) TUTI

An affine transformation L : R" — R" is defined by a matrix A € GL(n) and a vector b € R”
such that:

L(x)=Ax+b.
The set of all such affine transformations is called the affine group of dimensions n, denoted by
A(n). L defined above is not a linear map unless b = 0. By introducing homogenous coordinates
to represent x € IR”“, L becomes a linear mapping from

. mon+l n+1. A A b (X)
L:R — R (1)—><0 1> 1)

A matrix <13 119> with A € GL(n),b € R" is called an affine matrix. It is an element of

GL(n + 1). The affine matrices for a subgroup in GL(n + 1).

30

Rigid-Body Motion TUm

A rigid-body motion (or rigid-body transformation) is a family of maps
g : R} > R X - g/(X),t € [0,T],

which preserve the norm and cross product of any two vectors:

g =v],VveRr’

e g(u) X g(v) =guXv),Vu,v € R,

Since norm and scalar product are related by the polarisation identity
1 2 2
(u, v) =Z(|u+VI — lu—=vI[%),

once can also state that a rigid-body motion is a map which preserves inner product and cross
product. As a consequence, rigid-body motions also preserve the triple product

<gt(u)9 gt(v) X gt(w)> — <I/l, V X W)a vua Va w E RS,
which means that they are volume-preserving.

31

Representation of Rigid-body Motion TUm

Does the above definition lead to a mathematical representation of rigid-body motion?

Since it preserves length and orientation, the motion g, of a rigid body is sufficiently defined by specifying
the motion of a Cartesian coordinate frame attached to the object (given by an origin and orthonormal
orientation vectors ¢y, €,, €3 € |R3). The motion of the origin can be represented by translation 7' € IR3,

whereas the transformation of the vectors ¢; is given by new vectors r; = g,(e;).

Scalar and cross product of these vectors are preserved:
rl.Trj = g(el-)Tg(ej) = el.Tej = 0;], I X1, = 13.
The first constraint amounts to the statement that the matrix R = (r{, r,, r3) is an orthogonal (rotation)
matrix: R’ R = RR! = I, whereas the second property implies that det(R) = + 1, in other words: R is an
element of the group SO(3) = {R € R?*| RTR =1, det(R) = + 1}.
Thus the rigid-body motion g, can be written as:
g(x)=Rx+T.

. Zc
Zy /

N
/
T /
I ! ‘\;\
! ‘\—\) y
1 Ye
Vo !
=~ Xe !
T~a /

x”' \\\\d
P 32

The Euclidean Group E(n) TUTI

A Euclidean transformation L : R" — R" is defined by an orthogonal matrix R € O(n) and a
vector 7' € R™:

x—> Rx+T.
The set of all such transformation is called the Euclidean group E(n). It is a subgroup of the affine
group A(n). Embedded by homogenous coordinates we get:

o ={ (8 1)

If R € SO(n), then we have the special Euclidean group SE(n). In particular, SE(3) represents
the rigid-body motions in R?.

Re Oln),T e [R”}.

In summary:

SO(n) Cc O(n) Cc GL(n), SE(n) c E(n) cA(n) C GL(n+1).

33

Sophus Library

#include <iostream>
#include <Eigen/Core>
#include <sophus/so3.h>
#include <sophus/se3.h>

int main(int argc, char* argv[]){
Eigen::Matrix3d R mat;
R mat << 1, 0, O, 0, 1, O, O, 0, 1;

Sophus::503d R w ¢(R mat); // Rotation from camera to world
std::cout << "R w i:\n" << R w c.matrix() << std::endl;

Eigen::Vector3d t w c;
twe<<l1, 2, 3;
std::cout << "t: " << t w c.transpose() << std::endl;

Sophus::SE3d T w_c(

R w c,

t wc); // Rigid body transformation from camera to world
std::cout << "T w c:\n" << T w c.matrix() << std::endl;

Eigen::Vector3d p c; // Point in the camera coordinate frame
pc<<1, 1, 10;

Eigen::Vector3dd p w = T w c * p ¢; // Should be (2, 3, 13)
Eigen::Vector4d p w hom =
T w c.matrix() * p c.homogeneous(); // Should be (2, 3, 13, 1)

std::cout << "p w: << p w.transpose() << std::endl;
std::cout << "p w hom: " << p w hom.transpose() << std::endl;

Eigen::Vector3d p ¢ new = T w _c.inverse() * p w; // Should be (1, 1, 10)
std::cout << "p ¢ new: " << p c new.transpose() << std::endl;

return 0;

Exponential Coordinates of Rotation TUm

We will now derive a representation of an infinitesimal rotation. To this end, consider a family of

rotation matrices R(#) which continuously transform a point from its original location (R(0) = I) to
a different one.

Xtmns(t) — R(I)Xorig’
Since R(H)R(¢)! = I,Vt, we have

d
E(RRT) =RRT"+RR" =0 = RR'= - RR".

with R(?) € SO(3).

Thus, RR'isa skew-symmetric matrix. As shown in the section about the ~ operator, this
implies that there exists a vector w(¢) € R such that:
RORI(H) = w(H) < R(¢) = WwHR(®).

Since R(0) = 1, it follows that R(0) = ®(0). Therefore the skew-symmetric matrix
w(0) € so(3) gives the first order approximation of a rotation:

R(dt) = R(0) = dR = I+ w(0)dt.

35

Lie Group and Lie Algebra TUm

The above calculation showed that the effect of any infinitesimal rotation R € SO(3) can be
approximated by an element from the space of skew-symmetric matrices

so(3) = {w|w € R?}.
The rotation group SO(3) is called a Lie group. The space so(3) is called Lie algebra.

Def.: A Lie group (or infinitesimal group) is a smooth manifold that is also a group, such that the
group operations multiplication and inversion are smooth maps.

As shown above: The Lie algebra so(3) is the tangent space at the identity of the rotation group
SO(3).

36

The Exponential Map TUm

Given the infinitesimal formulation of rotation in terms of the skew-symmetric matrix w, is it

possible to determine a useful representation of the rotation R(#)? Let us assume W is constant in

time.
The differential equation system

{Rm = WR(1),

R©O) =1.

has the solution

00 A NK NN
R(t) = exp(wr) = Z (W) =1+ wt+ (1)

n=0

which is a rotation around the axis w € R? by an angle of ¢ (if |w| = 1). Alternatively, one can

absorb the scalar f € R into the skew symmetric matrix W to obtain R(¢) = exp(V) with v = wr.

This matrix exponential therefore defines a map from the Lie algebra to the Lie group:

exp : so(3) - SOQ3); w — exp(w).

+ ...,
n!

37

The Logarithm of SO(3) TUm

As in the case of real analysis one can define an inverse function to the exponential map by the
logarithm. In the context of Lie groups, this will lead to a mapping from the Lie group to the Lie

algebra. For any rotation matrix R € SO(3), there exists w € R? such that R = exp(W). Such
an element is denoted by w = log(R).
If R = (rl-j) # [, then an appropriate w is given by:

(Van — For)

_,(trace(R) — 1 |w| '327 13

|w| = cos (> >,W=2. i3 — 131 .
sin(|w]) 21 7~ "2,

For R =1, we have |w| = 0, i.e. a rotation by an angle 0. The above statement says: Any
orthogonal transformation R € SO(3) can be represented by rotating by and angle | w |

around an axis as defined above.

|w
Obviously the above representation is not unique since increasing the angle by multiples of 27
will give the same rotation R.

38

Schematic Visualization of Lie Group and Algebra TUT]

Lie algebra

Lie group

Def.: A Lie group is a smooth manifold that is also a group, such that the group operations
multiplication and diversion are smooth maps.

Def.: The tangent space to a Lie group at the identity element is called the associated Lie
algebra.

The mapping from the Lie algebra to the Lie group is called the exponential map. Its inverse is
called logarithmic map.

39

Rodrigues’ Formula Ut

We have seen that any rotation can be computed by R = exp(w). There exists a closed-form

version of the exponential map for w € so(3)
sin(|w]) . T —cos(|w]) .,
w

exp(w) =1+ :
|w| |w |
This is known as Rodrigues’ formula.
w
Proof: Lett = |w| and v = ——. Then
|w]
P=wl-LP==9 ...,
and
A T (t 3 N £5) <t2 A4 +6 >A2
exp(w) = exp(vt) = I + TR YT D

40

Lie Algebra for SE(3) TUm

Given a continuous family of rigid-body transformation

¢ R — SEB3): g(f) = (R(()t) Ti”) c RY¢

we consider

0 0

As in the case of SO(3), the matrix RRT corresponds to some skew-symmetric matrix w € so(3).

o oo
(g = (RR I'—RR T> e R¥*4,

Defining a vector v(¢) = T — WT(¢), we have:

: “1rn w(t) (1)
g(H)g (f)—< o 0

The matrix c,g € se(3) is called twist and can be parametrized with twist coordinates & € R°.

=)= (5 o) er (5 0) = () =sew

> = &(1) € R¥™4,

41

Exponential map and Logarithm for SE(3) Ut

Similarly to SO(3) any rigid body transformation can be (not uniquely) represented by R = eXp((f).

. A
There exists a closed-form version of the exponential map for & = (V‘;) e se(3):

exp(f) = (exlz)(w) le>

where J is the left Jacobian of SO(3) and can be computed in closed form:
1l —cos(@) , 6—sin@) ,,
w + w=,

J=1+— -

where 8 = | w].
The logarithm also has a closed-form solution:

(1) = 1o (fg 1)

In this case we first find w = log(R)" with SO(3) logarithm and then v = J~t, where the inverse
Jacobian also has a closed form:

1 | 1 1 +cos(@) \ .,
J o =l-—w+ | —=— : we.
2 02 20sin(0)

42

Lie Group and Algebra Summary

Lie Group
SO3)
R e R3X3
RRT =1
det(R) =1

Lie Group

SE(3)

T € R4X4

(5

Rotation Matrix

R sin(@) , 1—-cos(@) .,
Exponential exp(w) =1+ Wt—p "
4,
}
Logarithm trace(R) — 1 0 '32 7723
9=cos‘1(5) =S d 3= TI3
sin(6) 21— T2
Rigid Body Transform Matrix
o [expw) Jv B l—cos@) ., 6-—sin@) ,,
emﬂ@%-(0 1) J=1+ 02 w+ 0 w
Exponential
4,
}
. — \Y
Logarithm W = lo_gl(R) oo ta (L1 c.os(H) 22
v=J"t 2 62 20sin(0)

TuTi

Lie Algebra

so(3)
we R?
0 =|w]|

Lie Algebra

se(3)
£ e RO
0= |w]

43

Sophus Expmap and Logmap

#include <iostream>
#include <Eigen/Core>
#include <sophus/so3.h>
#include <sophus/se3.h>

int main(int argc, char* argv[]){
Eigen::Vector3d rand vec3 =
Eigen: :Vector3d::Random() / 100.0;
std::cout << "rand vec3: " << rand vec3.transpose() << std::endl;

Sophus::503d rand R = Sophus::S03d::exp(rand vec3);
std::cout << "rand R:\n" << rand R.matrix() << std::endl;

Eigen::Vector3d log rand R =
rand R.log();

std::cout << "log rand R: << log rand R.transpose() << std::endl;

Sophus: :Vector6d rand vecé6 =
Sophus: :Vector6d: :Random() / 100.0;
std::cout << "rand vec6: " << rand vecé6.transpose() << std::endl;

Sophus::SE3d rand T = Sophus::SE3d::exp(rand vecé6);
std::cout << "rand T:\n" << rand T.matrix() << std::endl;

Sophus: :Vector6d log rand T =

rand T.log();
std::cout << "log rand T:
return 0;

<< log rand T.transpose() << std::endl;

Summary of Lie Groups Ut

Reasons to use Lie Groups
- Unified representation of many transformations
- rotation SO(3) SO(2)
- rigid body transformations SE(3) SE(2)
- scaling Sim(3) Sim(2)
 and others
- Easy concatenation of transformations with matrix multiplication
- Easy applications
- No singularities (because overparametrizes)

- Minimal parametrisation of updates using Lie algebra coordinates (allows unconstrained
optimization)

45

| ocal Parametrization in Ceres

class LocalParameterizationSE3 : public ceres::LocalParameterization {
public:

}i

virtual ~LocalParameterizationSE3() {}

virtual bool Plus(double const* T raw, double const* delta raw,
double* T plus delta raw) const ({
Eigen: :Map<SE3d const> const T(T raw);
Eigen: :Map<Vector6d const> const delta(delta raw);
Eigen: :Map<SE3d> T plus delta(T plus delta raw);
T plus delta = T * SE3d::exp(delta);
return true;

}

virtual bool ComputedJacobian(double const* T raw,
double* jacobian raw) const {
Eigen: :Map<SE3d const> T(T raw);
Eigen: :Map<Eigen::Matrix<double,
jacobian raw);
jacobian = T.Dx this mul exp x at 0();
return true;

}

, 6, Eigen::RowMajor>> jacobian(

virtual int GlobalSize() const { return SE3d::num parameters; }

virtual int LocalSize() const { return SE3d::DoF; }

46

Exercise 1 TUm

In the first exercise you should:

« Review the history and current state of SLAM.

Clone and set up the repository with the code for the practical course.

Get familiar with CMake parameters used in the project.

Implement exp and log functions without built-in Sophus functions.

Enable the tests for this exercise and push your solution to the server for automatic evaluation
Prove the formula of the Jacobian used in SE(3) exponential map.

47

