

Practical Course: Vision Based Navigation

Lecture 4: Structure from Motion (SfM)

Prof. Dr. Daniel Cremers Jason Chui, Simon Klenk

Version: 21.11.2021

Topics Covered

- Introduction
	- − Structure from Motion (SfM)
	- − Simultaneous Localization and Mapping (SLAM)
- Bundle Adjustment
	- − Energy Function
	- − Non-linear Least Squares
	- − Exploiting the Sparse Structure
- Triangulation

Structure from Motion

Agarwal et al., "Building Rome in a day", ICCV 2009, "Dubrovnik" image set

- 3D reconstruction using a set of unordered images
- Requires estimation of 6DoF poses

Simultaneous Localization and Mapping (SLAM) THE

Engel et al., "LSD-SLAM: Large-Scale Direct Monocular SLAM", ECCV 2014

- Estimate 6DoF poses and map from sequential image data
- Update once new frames arrive

Problem Definition SfM / Visual SLAM

Estimate camera poses and map from a set of images

• Input

Set of images $I_{0:t} = \{I_0, I_1, ..., I_t\}$

Additional input possible

- Stereo
- Depth
- Inertial measurements
- Control input

fr3/long_office_household sequence, TUM RGB-D benchmark

Mur-Artal et al., 2015

• Output

Camera pose estimates $\mathbf{T}_i \in \text{SE}(3)$, \mathbf{a} lso written as $\boldsymbol{\xi}_i = (\log \mathbf{T}_i)^T$ $i \in \{0,1,...,t\}$

map *^M*

Typical SfM Pipeline

Visual SLAM

 $SLAM \subset SHM$, with special focus:

- Sequential image data
- Data arrives sequentially
- Preferably realtime
- More focus on trajectory

Technical solutions:

- Windowed optimization
- Selection of keyframes
- Removal of keyframes (e.g. marginalization)
- Detect loop closures for Accumulation of drift
- Global mapping in separate thread
- Pose graph optimization

Odometry

- No global mapping
- Incremental tracking only
- Local map possible

Landmarks and Features

• The map consists of 3D locations of landmarks

$$
M = \{ \mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_S \}
$$

• For image τ , the set of 2D image coordinates of detected features is denoted

$$
Y_{\tau} = {\mathbf{y}_{\tau,1}, \mathbf{y}_{\tau,2}, ..., \mathbf{y}_{\tau,N}}
$$

• Known data association:

Feature i in image τ corresponds to landmark $j = c_{\tau,i}$ ($1 \leq i \leq N, \, 1 \leq j \leq S$)

Bundle Adjustment Energy

$$
E(\xi_{0:t}, M) = \frac{1}{2} (\xi_0 \ominus \xi^0)^\top \Sigma_{0,\xi}^{-1} (\xi_0 \ominus \xi^0)
$$

Absolute pose prior

$$
+ \frac{1}{2} \sum_{\tau=0}^t \sum_{i=1}^{N_\tau} \left(\mathbf{y}_{\tau,i} - h(\xi_\tau, \mathbf{m}_{c_{\tau,i}}) \right)^\top \Sigma_{\mathbf{y}_{\tau,i}}^{-1} (\mathbf{y}_{\tau,i} - h(\xi_\tau, \mathbf{m}_{c_{\tau,i}}))
$$

Reprojection
error

- Pose prior: Fix absolute pose ambiguity
	- − In this case equivalent to keeping *ξ*⁰ = *ξ*⁰
	- − Keep absolute pose information e.g. when first frame is marginalized
- Additional prior to fix scale ambiguity might be necessary

Energy Function as Non-linear Least Squares

 $\mathbf{x} :=$

*ξ*0

 $\ddot{\cdot}$

ξt

m¹

 $\ddot{\cdot}$

 m_S

• Residuals as function of state vector **x**

$$
\mathbf{r}_{t,i}^{0}(\mathbf{x}) := \xi_{0} \ominus \xi^{0}
$$

$$
\mathbf{r}_{t,i}^{y}(\mathbf{x}) := \mathbf{y}_{t,i} - h\left(\xi_{t}, \mathbf{m}_{c_{t,i}}\right)
$$

• Stack the residuals in a vector-valued function und collect the residual covariances on the diagonal blocks of a square matrix

$$
\mathbf{r}(\mathbf{x}) := \begin{pmatrix} \mathbf{r}^0(\mathbf{x}) \\ \mathbf{r}^y_{0,1}(\mathbf{x}) \\ \vdots \\ \mathbf{r}^y_{t,N_t}(\mathbf{x}) \end{pmatrix} \qquad \mathbf{W} := \begin{pmatrix} \mathbf{\Sigma}_{0,\xi}^{-1} & 0 & \cdots & 0 \\ 0 & \mathbf{\Sigma}_{y_{0,1}}^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{\Sigma}_{y_{t,N_t}}^{-1} \end{pmatrix}
$$

• Rewrite energy function as

$$
E(\mathbf{x}) = \frac{1}{2} \mathbf{r}(\mathbf{x})^{\top} \mathbf{W} \mathbf{r}(\mathbf{x})
$$

Recap: Gauss-Newton Method

- Idea: Approximate Newton's method to minimize *E*(**x**)
	- Approximate $E(\mathbf{x})$ through linearization of residuals

$$
\tilde{E}(\mathbf{x}) = \frac{1}{2} \tilde{\mathbf{r}}(\mathbf{x})^\top \mathbf{W} \tilde{\mathbf{r}}(\mathbf{x})
$$
\n
$$
= \frac{1}{2} \left(\mathbf{r} \left(\mathbf{x}_k \right) + \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right) \right)^\top \mathbf{W} \left(\mathbf{r} \left(\mathbf{x}_k \right) + \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right) \right)
$$
\n
$$
= \frac{1}{2} \mathbf{r} \left(\mathbf{x}_k \right)^\top \mathbf{W} \mathbf{r} \left(\mathbf{x}_k \right) + \mathbf{r} \left(\mathbf{x}_k \right)^\top \mathbf{W} \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right) + \frac{1}{2} \left(\mathbf{x} - \mathbf{x}_k \right)^\top \mathbf{J}_k^\top \mathbf{W} \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right)
$$
\n
$$
= \mathbf{b}_k^\top
$$

• Finding root of gradient as in Newton's method leads to update rule

$$
\nabla_{\mathbf{x}} \tilde{E}(\mathbf{x}) = \mathbf{b}_k^{\top} + (\mathbf{x} - \mathbf{x}_k)^{\top} \mathbf{H}_k
$$

$$
\nabla_{\mathbf{x}} \tilde{E}(\mathbf{x}) = 0 \quad \text{iff} \quad \mathbf{x} = \mathbf{x}_k - \mathbf{H}_k^{-1} \mathbf{b}_k
$$

$$
\boxed{\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}_k^{-1} \mathbf{b}_k}
$$

- Pros:
	- Faster convergence than gradient descent (approx. quadratic convergence rate)
- Cons:
	- Divergence if too far from local optimum (H not positive definite)
	- Solution quality depends on initial guess

Structure of the Bundle Adjustment Problem

 \cdot \mathbf{b}_k and \mathbf{H}_k sum terms from individual residuals:

$$
\mathbf{b}_{k} = \mathbf{b}_{k}^{0} + \sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{b}_{k}^{\tau,i} = (\mathbf{J}_{k}^{0})^{\top} \Sigma_{0,\xi}^{-1} \mathbf{r}^{0} (\mathbf{x}_{k}) + \sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} (\mathbf{J}_{k}^{\tau,i})^{\top} \Sigma_{\mathbf{y}_{\tau,i}}^{-1} \mathbf{r}^{\mathbf{y}}_{\tau,i} (\mathbf{x}_{k})
$$

$$
\mathbf{H}_{k} = \mathbf{H}_{k}^{0} + \sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{H}_{k}^{\tau,i} = (\mathbf{J}_{k}^{0})^{\top} \Sigma_{0,\xi}^{-1} (\mathbf{J}_{k}^{0}) + \sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} (\mathbf{J}_{k}^{\tau,i})^{\top} \Sigma_{\mathbf{y}_{\tau,i}}^{-1} (\mathbf{J}_{k}^{\tau,i})
$$

 \mathbf{J}_k^0 *^k* Jacobian of pose prior

- $\mathbf{J}_k^{\tau,i}$ *^k* Jacobian of residuals for feature *i* in image *τ*
- What is the structure of these terms?

Structure of the Bundle Adjustment Problem

 $$ *t* ∑ *τ*=0 *i*=1 *Nτ* ∑ $\mathbf{b}_k^{\tau,i}$ $\mathbf{x}_k^{t,i} = \left(\mathbf{J}_k^0\right)^{\top} \mathbf{\Sigma}_{0,\xi}^{-1} \mathbf{r}^0\left(\mathbf{x}_k\right) +$ *t* ∑ *τ*=0 *Nτ* ∑ *i*=1 $\left(\mathbf{J}_{k}^{\tau,i}\right)$ ⊤ $\sum_{\mathbf{y}_{\tau,i}}^{-1} \mathbf{r}_{\tau,i}^{\mathbf{y}}\left(\mathbf{x}_k\right)$

Structure of the Bundle Adjustment Problem

τ=0 *i*=1

τ=0 *i*=1

Example Hessian of a BA Problem

Landmark dimensions (982 landmarks)

Lourakis et al., 2009

Large, but sparse!

How to invert efficiently?

• Idea:

Apply the Schur complement to solve the system in a partitioned way

$$
\mathbf{H}_{k}\Delta\mathbf{x} = -\mathbf{b}_{k} \qquad \qquad \left(\begin{array}{c} \mathbf{H}_{\xi\xi} & \mathbf{H}_{\xi\mathbf{m}} \\ \mathbf{H}_{\mathbf{m}\xi} & \mathbf{H}_{\mathbf{m}\mathbf{m}} \end{array}\right) \left(\begin{array}{c} \Delta\mathbf{x}_{\xi} \\ \Delta\mathbf{x}_{\mathbf{m}} \end{array}\right) = -\left(\begin{array}{c} \mathbf{b}_{\xi} \\ \mathbf{b}_{\mathbf{m}} \end{array}\right)
$$

$$
\Delta\mathbf{x}_{\xi} = -\left(\mathbf{H}_{\xi\xi} - \mathbf{H}_{\xi\mathbf{m}}\mathbf{H}_{\mathbf{m}\mathbf{m}}^{-1}\mathbf{H}_{\mathbf{m}\xi}\right)^{-1} \left(\mathbf{b}_{\xi} - \mathbf{H}_{\xi\mathbf{m}}\mathbf{H}_{\mathbf{m}\mathbf{m}}^{-1}\mathbf{b}_{\mathbf{m}}\right)
$$

$$
\Delta\mathbf{x}_{\mathbf{m}} = -\mathbf{H}_{\mathbf{m}\mathbf{m}}^{-1} \left(\mathbf{b}_{\mathbf{m}} + \mathbf{H}_{\mathbf{m}\xi}\Delta\mathbf{x}_{\xi}\right)
$$

• Is this any better?

• What is the structure of the two sub-problems?

• Poses:
\n
$$
\Delta x_{\xi} = -\left(\mathbf{H}_{\xi\xi} - \mathbf{H}_{\xi m} \mathbf{H}_{mm}^{-1} \mathbf{H}_{m\xi}\right)^{-1} \left(\mathbf{b}_{\xi} - \mathbf{H}_{\xi m} \mathbf{H}_{mm}^{-1} \mathbf{b}_{m}\right)
$$
\n
$$
\mathbf{H}_{\xi\xi} - \mathbf{H}_{\xi m} \mathbf{H}_{mm}^{-1} \mathbf{H}_{m\xi} = \mathbf{H}_{\xi\xi} - \sum_{j=1}^{S} \mathbf{H}_{\xi m_{j}} \mathbf{H}_{m_{j}m_{j}}^{-1} \mathbf{H}_{m_{j}\xi}
$$
\nReduced pose Hessian
\n
$$
\mathbf{b}_{\xi} - \mathbf{H}_{\xi m} \mathbf{H}_{mm}^{-1} \mathbf{b}_{m} = \mathbf{b}_{\xi} - \sum_{j=1}^{S} \mathbf{H}_{\xi m_{j}} \mathbf{H}_{m_{j}m_{j}}^{-1} \mathbf{b}_{m_{j}}
$$

• What is the structure of the two sub-problems?

- What is the structure of the two sub-problems?
- Landmarks:

- Landmark-wise solution
- Comparably small matrix operations
- Only involves poses that observe the landmark

Camera on a moving vehicle (6375 images)

Flickr image search "Dubrovnik" (4585 images)

Agarwal et al., ECCV 2010

- Reduced pose Hessian can still have a sparse structure
- For many camera poses with many shared observations, the inversion of the reduced pose Hessian is still computationally expensive!
- Exploit further structure, e.g. using variable reordering or hierarchical decomposition

Effect of Loop Closures on the Hessian

Full Hessian

Reduced pose Hessian

Band matrix

Before loop closure

Effect of Loop Closures on the Hessian

Full Hessian

Reduced pose Hessian

No band matrix: costlier to solve

After loop closure

Further Considerations

Many methods to improve convergence / robustness / run-time efficiency, e.g.

- Use matrix decompositions (e.g. Cholesky) to perform inversions
- Levenberg-Marquardt optimization improves basin of convergence
- Heavier-tail distributions / robust norms on the residuals can be implemented using iteratively reweighted least squares
- Preconditioning
- Hierarchical optimization
- Variable reordering
- Delayed relinearization

Triangulation

- Find landmark position given the camera poses
- Ideally, the rays should intersect
- In practice, many sources of error: pose estimates, feature detections and camera model / intrinsic parameters

Triangulation

- Goal: Reconstruct 3D point $\tilde{\mathbf{x}} = (x, y, z, w)^{\top} \in \mathbb{P}^3$ from 2D image observations $\{\mathbf{y}_1, ..., \mathbf{y}_N\}$ for known camera poses $\{\mathbf{T}_1, ..., \mathbf{T}_N\}$
- Linear solution: Find 3D point such that reprojections equal its projection

For each image *i*, let
$$
\mathbf{T}_i = \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \\ 0 & 0 & 0 \end{pmatrix}
$$
 and $\mathbf{y}_i = \begin{pmatrix} u \\ v \end{pmatrix}$

- Projecting
$$
\tilde{\mathbf{x}}
$$
 yields $\mathbf{y}'_i = \pi \left(\mathbf{T}_i \tilde{\mathbf{x}} \right) = \begin{pmatrix} \mathbf{p}_1 \tilde{\mathbf{x}} / \mathbf{p}_3 \tilde{\mathbf{x}} \\ \mathbf{p}_2 \tilde{\mathbf{x}} / \mathbf{p}_3 \tilde{\mathbf{x}} \end{pmatrix}$

- − Requiring $y'_i = y_i$ gives two linear equations per image:
- $\mathbf{p}_1\tilde{\mathbf{x}} = u\mathbf{p}_3\tilde{\mathbf{x}}$ $\mathbf{p}_2 \tilde{\mathbf{x}} = v \mathbf{p}_3 \tilde{\mathbf{x}}$
- $-$ Leads to system of linear equations $\mathbf{A}\tilde{\mathbf{x}}=\mathbf{0},$ two approaches to solve:
	- $-$ Set $w = 1$ and solve non-homogeneous least squares problem
	- − Find nullspace of ${\bf A}$ using SVD, then scale such that $w=1$
- Non-linear least squares on reprojection errors (more accurate):
- Different solutions for different methods in the presence of noise

$$
\min_{\mathbf{x}} \left\{ \sum_{i=1}^{N} ||\mathbf{y}_i - \mathbf{y}_i'||_2^2 \right\}
$$

Exercises

Exercise sheet 4

- Implement components of SfM pipeline
- BA: Ceres can do the Schur complement ·
- Triangulation: use OpenGV's triangulate function

```
ceres::Solver::Options ceres_options;
ceres options.max num iterations = 20;
ceres options.linear solver type =
ceres::SPARSE_SCHUR;
ceres options.num threads = 8;
ceres::Solver::Summary summary;
Solve(ceres_options, &problem, 
&summary);
std::cout << summary.FullReport() <<
std::endl;
```
Next slide

Exercise sheet 5

- Implement components of odometry
- Similar to sheet 4, but:
	- − More efficient 2D-3D matching using approximate pose of previous frame
	- − New keyframe if number of matches too small
	- − New landmarks by triangulation from stereo pair
	- − Keep runtime bounded by removing old keyframes

пm

iterations: 20.)

Termination: NO_CONVERGENCE (Maximum number of iterations reached. Number of

Summary

SfM

- Estimate map and camera poses from set of images
- SLAM: Sequential data, real-time
- Odometry: No global mapping

Bundle Adjustment

- Non-linear least squares problem
- Sparse structure of Hessian can be exploited for efficient inversion

Triangulation

- Linear and non-linear algorithms
- Differences in the presence of noise