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Topics Covered

• Introduction 
− Structure from Motion (SfM) 
− Simultaneous Localization and Mapping (SLAM) 

• Bundle Adjustment 
− Energy Function 
− Non-linear Least Squares 
− Exploiting the Sparse Structure 

• Triangulation
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Structure from Motion

• 3D reconstruction using a set of unordered images 

• Requires estimation of 6DoF poses
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Agarwal et al., “Building Rome in a day”, ICCV 2009, “Dubrovnik” image set



 Simultaneous Localization and Mapping (SLAM)

• Estimate 6DoF poses and map from sequential image data 

• Update once new frames arrive
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Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM”, ECCV 2014



Problem Definition SfM / Visual SLAM
Estimate camera poses and map from a set of images 

• Input 

Set of images    

Additional input possible 
• Stereo 
• Depth 
• Inertial measurements 
• Control input 

• Output 

Camera pose estimates , 

also written as                     

I0:t = {I0, I1, …, It}

Ti ∈ SE(3)
ξi = (log Ti)∨ i ∈ {0,1,…, t}
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Mur-Artal et al., 2015

fr3/long_office_household sequence, 
TUM RGB-D benchmark

map M



Typical SfM Pipeline
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1) Map initialization 
− Using 2D-to-2D correspondences 
− Recover pose (stereo pair if available) 
− Triangulate landmarks using pose

2) Localization with known map 
− Using 2D-to-3D correspondences

3) Mapping with known poses 
− Using 2D-to-2D correspondences 
→ Triangulation

4) Joint refinement of map and poses 
− Using 2D-to-2D correspondences 
→ Bundle adjustment



Visual SLAM

SLAM  SfM, with special focus: 
• Sequential image data 
• Data arrives sequentially 
• Preferably realtime 
• More focus on trajectory 

Technical solutions: 
• Windowed optimization 
• Selection of keyframes 
• Removal of keyframes (e.g. marginalization) 

Odometry 
• No global mapping 
• Incremental tracking only 
• Local map possible

⊂
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SLAMSfM

Clemente et al., RSS 2007

Loop closure

• Detect loop closures for Accumulation of drift
• Global mapping in separate thread
• Pose graph optimization



Landmarks and Features

• The map consists of 3D locations of landmarks 

• For image , the set of 2D image coordinates of detected features is denoted 

• Known data association: 
Feature  in image  corresponds to landmark  ( , )

τ

i τ j = cτ,i 1 ≤ i ≤ N 1 ≤ j ≤ S
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M = {m1, m2, …, mS}

Yτ = {yτ,1, yτ,2, …, yτ,N}

mcτ,i

ξτ

yτ,i



Bundle Adjustment Energy

 

• Pose prior: Fix absolute pose ambiguity 
− In this case equivalent to keeping  
− Keep absolute pose information e.g. when first frame is marginalized 

• Additional prior to fix scale ambiguity might be necessary

E (ξ0:t, M) =
1
2 (ξ0 ⊖ ξ0)⊤ Σ−1

0,ξ (ξ0 ⊖ ξ0)

+
1
2

t

∑
τ=0

Nτ

∑
i=1

(yτ,i − h (ξτ, mcτ,i))
⊤

Σ−1
yτ,i (yτ,i − h (ξτ, mcτ,i))

ξ0 = ξ0
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m0

ξ0

mSm1 m2

ξ1 ξ2 ξt

…

…
Absolute pose fixed by ξ0

Reprojection errors

3D coordinates of map points

Camera poses

Absolute 
pose prior

Reprojection 
error



Energy Function as Non-linear Least Squares

• Residuals as function of state vector  

 

• Stack the residuals in a vector-valued function und collect the residual covariances on the 
diagonal blocks of a square matrix 

 

• Rewrite energy function as  

x

r0(x):= ξ0 ⊖ ξ0

ry
t,i(x):= yt,i − h (ξt, mct,i)

r(x) :=

r0(x)
ry

0,1(x)
⋮

ry
t,Nt

(x)

W :=

Σ−1
0,ξ 0 ⋯ 0

0 Σ−1
y0,1

⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Σ−1

yt,Nt
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x :=

ξ0
⋮
ξt

m1
⋮

mS

E(x) =
1
2

r(x)⊤Wr(x)



Recap: Gauss-Newton Method

• Idea: Approximate Newton’s method to minimize  
• Approximate  through linearization of residuals 

 

• Finding root of gradient as in Newton’s method leads to update rule 

 

• Pros: 
• Faster convergence than gradient descent (approx. quadratic convergence rate) 

• Cons: 
• Divergence if too far from local optimum (  not positive definite) 
• Solution quality depends on initial guess

E(x)
E(x)

Ẽ(x) =
1
2

r̃(x)⊤Wr̃(x)

=
1
2 (r (xk) + Jk (x − xk))

⊤
W (r (xk) + Jk (x − xk))

=
1
2

r (xk)⊤ Wr (xk) + r (xk)⊤ WJk

=:b⊤
k

(x − xk) +
1
2 (x − xk)⊤ J⊤

k WJk

=:Hk

(x − xk)

∇xẼ(x) = b⊤
k + (x − xk)⊤ Hk

∇xẼ(x) = 0 iff x = xk − H−1
k bk

H
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 iteration indexk

xk+1 = xk − H−1
k bk

Jk := ∇xr(x)
x=xk



Structure of the Bundle Adjustment Problem

•  and  sum terms from individual residuals: 

 

 

• What is the structure of these terms?

bk Hk

bk = b0
k +

t

∑
τ=0

Nτ

∑
i=1

bτ,i
k = (J0

k)⊤ Σ−1
0,ξr

0 (xk) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i
ry

τ,i (xk)

Hk = H0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k = (J0

k)⊤ Σ−1
0,ξ (J0

k) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i (Jτ,i
k )

J0
k Jacobian of pose prior

Jτ,i
k Jacobian of residuals for feature i in image τ
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Structure of the Bundle Adjustment Problem

bk = b0
k +

t

∑
τ=0

Nτ

∑
i=1

bτ,i
k = (J0

k)⊤ Σ−1
0,ξr

0 (xk) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i
ry

τ,i (xk)
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b0
k +

t

∑
τ=0

Nτ

∑
i=1

bτ,i
k … bk dense vector

Σ−1
0,ξ

Σ−1
yτ,i

r0(xk)

ry
τ,i(xk)

ξ0 ξt m1 mS
J0

k

ξτ mcτ,i

Jτ,i
k



Structure of the Bundle Adjustment Problem

Hk = H0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k = (J0

k)⊤ Σ−1
0,ξ (J0

k) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i (Jτ,i
k )
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HkH0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k …

Σ−1
0,ξ

Σ−1
yτ,i

r0(xk)

ry
τ,i(xk)

ξ0 ξt m1 mS
J0

k

ξτ mcτ,i

Jτ,i
k

Diagonal, typically S ≫ t

Sparse!



Example Hessian of a BA Problem
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Lourakis et al., 2009

Landmark dimensions 
(982 landmarks)

Pose dimensions 
(10 poses)

Large, but sparse! 

How to invert efficiently?

Hk =



Exploiting the Sparse Structure

• Idea: 
Apply the Schur complement to solve the system in a partitioned way 

    

 

 

• Is this any better?

HkΔx = − bk (
Hξξ Hξm

Hmξ Hmm) (
Δxξ

Δxm) = − (
bξ

bm)

Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)

Δxm = − H−1
mm (bm + HmξΔxξ)
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Exploiting the Sparse Structure

• What is the structure of the two sub-problems? 

• Poses: 

 

Reduced pose Hessian 

   

Hξξ − HξmH−1
mmHmξ = Hξξ −

S

∑
j=1

Hξmj
H−1

mjmj
Hmjξ

bξ − HξmH−1
mmbm = bξ −

S

∑
j=1

Hξmj
H−1

mjmj
bmj
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Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)



Exploiting the Sparse Structure

• What is the structure of the two sub-problems? 

• Poses: 

     

    

Hξξ −
S

∑
j=1

Hξmj
H−1

mjmj
Hmjξ bξ −

S

∑
j=1

Hξmj
H−1

mjmj
bmj
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Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)

Poses that observe landmark j

bξ=

Hξmj
H−1

mjmj
bmj

Hξmj
H−1

mjmj
Hmjξ

−
S

∑
j=1

Hξξ −
S

∑
j=1

=

ξ0ξ0ξ0

ξt

ξt

ξt



Exploiting the Sparse Structure

• What is the structure of the two sub-problems? 

• Landmarks:  

   

• Landmark-wise solution 
• Comparably small matrix operations 
• Only involves poses that observe the landmark 
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Δxm = − H−1
mm (bm + HmξΔxξ)

= − +
ξ0 ξt

Δxmj
= − H−1

mjmj (bmj
+ HmjξΔxξ)



Exploiting the sparse structure

 

As a result, only a much smaller matrix 
has to be inverted 

Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)
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−1



Exploiting the Sparse Structure

• Reduced pose Hessian can still have a sparse structure 
• For many camera poses with many shared observations, the inversion of the reduced pose 

Hessian is still computationally expensive! 
• Exploit further structure, e.g. using variable reordering or hierarchical decomposition
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Agarwal et al., ECCV 2010

Camera on a moving vehicle 
(6375 images)

Flickr image search “Dubrovnik” 
(4585 images)



Effect of Loop Closures on the Hessian
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Band matrix

Full Hessian

Reduced pose Hessian

Before loop closure

ξ3

ξ2

ξ1

ξ0

m4

m3

m1

m2



Effect of Loop Closures on the Hessian
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No band matrix: costlier to solve

Full Hessian

Reduced pose Hessian

After loop closure

ξ3

ξ2

ξ1

ξ0

m4

m3

m1

m2



Further Considerations

Many methods to improve convergence / robustness / run-time efficiency, e.g. 

• Use matrix decompositions (e.g. Cholesky) to perform inversions 
• Levenberg-Marquardt optimization improves basin of convergence 
• Heavier-tail distributions / robust norms on the residuals can be implemented using iteratively 

reweighted least squares 
• Preconditioning 
• Hierarchical optimization 
• Variable reordering 
• Delayed relinearization
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Triangulation

• Find landmark position given the camera poses 
• Ideally, the rays should intersect 
• In practice, many sources of error: pose estimates, feature detections and camera model / 

intrinsic parameters
25
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Triangulation
• Goal: Reconstruct 3D point  from 2D image observations  for 

known camera poses  

• Linear solution: Find 3D point such that reprojections equal its projection 

− For each image , let   and 

− Projecting  yields 

− Requiring  gives two linear equations per image: 

− Leads to system of linear equations , two approaches to solve: 
− Set  and solve non-homogeneous least squares problem 
− Find nullspace of  using SVD, then scale such that  

• Non-linear least squares on reprojection errors (more accurate): 

• Different solutions for different methods in the presence of noise

x̃ = (x, y, z, w)⊤ ∈ ℙ3 {y1, …, yN}
{T1, …, TN}

i

x̃

y′�i = yi

Ax̃ = 0
w = 1

A w = 1
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y′�i = π (Tix̃) = (p1x̃ /p3x̃
p2x̃ /p3x̃)

p1x̃ = up3x̃
p2x̃ = vp3x̃

yi = (u
v)

min
x {

N

∑
i=1

∥yi − y′�i∥2
2}

Ti =

p1
p2
p3

0 0 0 1



Exercises

Exercise sheet 4 
• Implement components of SfM pipeline 
• BA: Ceres can do the Schur complement 
• Triangulation: use OpenGV’s triangulate function 

Exercise sheet 5 
• Implement components of odometry 
• Similar to sheet 4, but: 
− More efficient 2D-3D matching using approximate pose of previous frame 
− New keyframe if number of matches too small 
− New landmarks by triangulation from stereo pair 
− Keep runtime bounded by removing old keyframes
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ceres::Solver::Options ceres_options;
ceres_options.max_num_iterations = 20;
ceres_options.linear_solver_type = 
ceres::SPARSE_SCHUR;
ceres_options.num_threads = 8;
ceres::Solver::Summary summary;
Solve(ceres_options, &problem, 
&summary);
std::cout << summary.FullReport() << 
std::endl;

Next slide



28

                                     Original                  Reduced
Parameter blocks                         4896                     4892
Parameters                              15354                    15324
Effective parameters                    15190                    15162
Residual blocks                         24014                    24014
Residuals                               48028                    48028

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                    SPARSE_SCHUR             SPARSE_SCHUR
Threads                                     8                        8
Linear solver ordering              AUTOMATIC                 4730,162
Schur structure                         2,3,6                    2,3,6

Cost:
Initial                          3.979886e+03
Final                            3.766801e+03
Change                           2.130843e+02

Minimizer iterations                       21
Successful steps                           21
Unsuccessful steps                          0

Time (in seconds):
Preprocessor                         0.048047

  Residual only evaluation           0.069569 (20)
  Jacobian & residual evaluation     0.388923 (21)
  Linear solver                      0.586967 (20)
Minimizer                            1.134797

Postprocessor                        0.001068
Total                                1.183913

Termination:                   NO_CONVERGENCE (Maximum number of iterations reached. Number of 
iterations: 20.)



Summary

SfM 
• Estimate map and camera poses from set of images 
• SLAM: Sequential data, real-time 
• Odometry: No global mapping 

Bundle Adjustment 
• Non-linear least squares problem 
• Sparse structure of Hessian can be exploited for efficient inversion 

Triangulation 
• Linear and non-linear algorithms 
• Differences in the presence of noise 
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