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Abstract

Up until recently, a generic density function was used to model the ge-
ometry learnt by neural volume rendering approaches. The volume density
function is described in this paper, Volume Rendering of Neural Implicit Sur-
faces, as Laplace’s cumulative distribution function (CDF) applied to a rep-
resentation of a signed distance function (SDF). There are three advantages
to using this straightforward density representation: it gives the geometry a
helpful inductive bias; it makes it easier to set a bound on the opacity ap-
proximation error, which results in an accurate sampling of the viewing ray.
Effective unsupervised disentanglement of shape and appearance in volume
rendering is made possible. Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron
Lipman introduced this paper in December 2021 [5].

1 Introduction

Volume rendering is a group of methods for displaying volume density in radiance
fields using what is known as the volume rendering integral. Recently, it has been
demonstrated that modeling the density and radiance fields as neural networks may
produce excellent predictions. However, this method of visualizing neural volumes
has few drawbacks.

NeRF [3] has opened up a field of study integrating volume rendering by in-
troducing neural implicit functions to provide photo-realistic rendering outcomes
and it has low memory foot-print. This method, which was improved upon by its
follow-ups, roughly represents the integral as alpha-composition. However, finding
the right threshold to separate surfaces from the anticipated density is difficult, and
the recovered geometry is not good enough.

Multi-view 3D surface reconstruction is another related field of work. Tradition-
ally, it is either a depth-based or voxel-based. Depth-based suffers from complex
pipeline which could accumelate errors through each stage. Voxel-basaed is limited
to low resolution because its use of memory and requires accurate object masking.

A new model for the density in neural volume rendering is introduced by VolSDF
[5]. The main concept is to show density as a function of signed distance to scene
surface. Such a density function offers a clearly defined surface that creates density,
among other advantages. Additionally, VolSDF enables bounding the opacity along
ray approximation error.
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2 Method Description

2.1 A New Density Function

Moving from neural implicit function in volume rendering to geometry-based func-
tion requires parameterization of the volume density. The parameterization is de-
fined as a modified signed distance function. This specification starts by introducing
a new density function o that uses LaPlace distribution. Laplace distribution is use-
ful where heterogeneity in the population is suspected, and the observations might
show large errors which in our case sampling points in tracing ray from different
poses.

o(@) = aVs(—da(z)) (1)
The first part is the laplace distribution

Lexp <£> if s <0
2 B =
Uy(s) =47 N (2)
1—5exp<—3> if s >0
where « and [ are learnable parameters, as the SDF get nears the object both

parameters get decreased and the density converges to the object volume. The
Signed Distance Function (SDF) is

— (_1)la@) m; _
do(z) = (—1) ;Iel}aﬂx Y| (3)

where 1o (z) is a binary indicator [1, 0] if the point 2 is inside the volume object. M
is the surface boundary of the object and y is a point on that surface. This approach
will pave the way to reconstruct the surface in a well-defined process.

2.2 Density-based Volume Rendering

Second step in the rendering process is rendering the volume of the density. A crucial
method in rendering volume involves using ray tracing, where the light radiance from
the ray is integerated to render the volume of the object. In calculating this step,
two quantities are involved; namely the volume opacity and the radinace field.

Transperancy is defined as the propability that the ray will travel without hitting
a surface along a certain segment.

T(t) = exp (— /0 ta(m(s))ds) ()

where x is the ray, ¢ is the segment it traveled without bouncing off, and s is the
sampled points along the ray z. Since we are more interested in the opacity (the
complement of T) of the object, we could consider the opacity as a CDF and derive
the PDF as follows and name it 7:

dO d
— ()= 2 (1=T() = o(@())T(t) = 7(t) (5)
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Now we can integerate the light along the radiance field L through this formula:

I(e,v) = /0 " L), n(t), v)r(t) dt (6)

where ¢ is the position of the camera eminating light from point z in the direction
of unit vector v, and n(t) is the surface normal since the problem is of bidirectional
reflectance nature.

Since we are using samples of points along the ray, the paper uses rectangle rule
approximation of the integral in equation [G}

I(e,v) = Is(e,v) = > 7L (7)
i=1
S in this equation is the set of discrete sample points where s = 0 < s < ... <
Sm = M and M is a large constant.

2.3 Bounding the Error on Opacity

Using approximation to calculate the integral will have a margin of error, and this
error should be bound if we want to have a more accurate representation of the
object. Using left Riemann summ to approximate the opacity O:

~ N

O(t) =1 =T(t) = 1 — exp(=R(1)),

. L (8)
where R(t) = Z (SZ‘O'i + (t - tk>ak
=1

Since this is rectangle rule, §; = t; 1 — t; is the difference between two intervals over
the ray . The density introduced in equation 1| provide a good basis to conclude the
opacity approximation error. Deriving the Wg function and bound it with Lipschitz
constant will yeilds:

d d:
—U(x(s))‘ < L exp (-i) ,whered! = min  |jz(s)—yl| (9
ds 26 p s € [t tiy]

y ¢ B;U B

As illustrated in figure (1| [5], where B is the ball of the
ray = at interval ¢, and d is the distance between the point
and the surface. From here, the paper based the error E on
the unsigned distance at the interval’s two end points and (t:) @ (tir1)
density parameters o and : "

B; Bi1

k-1
a - v 2 ,ﬁ 2 ,ﬁ
B < B() = 4 (;@-e 5 (= ki) ﬁ) (10)
= A Figure 1: d} as the min-
Now we have the approxiamtion for the integral R and the imal distance between
bounded opacity approximation error as follows for a period WO sets-
t:
0@) = O)] < exp (~R(ty)) (exp(Eltain)) ~ 1) (11)

3



Aqeel Alshakhori Volume Rendering of Neural Implicit Surfaces

However, we want to take into account all the intervals 7 and set the maximum as
our bound B as a function of 7 and f:

max ‘O(t) - O(t)) < Brs= max {exp (—R(tk)) (eXp(E(tkH)) - 1)} (12)

te[0,M] ken—1]

2.4 Sampling Algorithm

From previous equation, we can provide an e for the opacity.
However the choice of samples used in 7 plays a critical role

in the quality of the integral equation [l The paper suggests  Aigoritm iz Sampiing algoritm.

the adaptive sampling, i.e. by using the inverse CDF O~!. The  Input: error threshold ¢ > 0; 5
Igorithm starts with unif ling 7y and t bove & et

algorithm starts with uniform sampling 7 and two 3, one above , yiguize g, such that Brs, < e

threshold and one below. Then using bisection method iteratively s while By s > e and not max_iter do

. . . . e A 1
until B, is found. This value is then used to esitimate O. A fresh ¢ | wsmele”
5 if B7 s, < ethen

samples (m = 64) using the inverse sampling is returned to S. 6 Find 8, € (8, 8+) so that
Brp. =¢
7 Update 3 < Bs
2.5 Training s | end
9 end

Training setting used two MLP; one is for approximating SDF of ' Estimate OusingTand 5y
11 S < get fresh m samples using O

learned geometry and global geometry feature z with 8 layer of . returns

width 256: f,(z) = (d(z),z(z)) € R, The second MLP is
deployed to present the secene’s radiance field: Ly (z,n,y,2) € R?
with learnable parameter . Two scalar learnable parameters
a, € R, with a = 1. And the positional encoding for z and
v, was the same as NeRF.

The data were images collected from camera at different positions. Each pixel
in these images has three values: (I,,¢,,v,), the first one is the RGB color intensity,
the second the position of the camera and the third is the viewing direction. The
loss consist of two parts; one for RGB color loss and the second is Eikonal loss,
which showed from previous work that it results in a solution that is close to a
signed distance function|[I]:

L(0) = Lrep(9) + Aspr(p) (13)

where 6 is the set of all learnalble pararmeters § = (p,1,3), and A is a hyper-
parameter set to 0.1.

3 Experiments and Results

Two datasets were used for testing: DTU [2] and BlendedMVS [4]. DTU is a
multi-view image of different objects with fixed camera and lighting parameters.
BlendedMVS has a large collection of scenery that can be used as a high quality
ground truth, however 9 scenes were selected.
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Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

IDR 1.63 187 0.63 048 1.04 0.79 0.77 133 1.16 0.76 0.67 0.90 0.42 0.51 0.53 0.90
colmap; 0.45 0.91 037 0.37 090 1.00 0.54 1.22 1.08 0.64 0.48 0.59 0.32 0.45 0.43 0.65
5 colmap, 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36
E NeRF 192 1.73 192 0.80 3.41 1.39 151 544 204 110 1.01 2.88 091 1.00 0.79 1.89
@ VoISDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
:

Distance

NeRF  26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.0 35.59 35.51 30.65
VoISDF 26.28 25.61 26.55 26.76 31.57 31.5 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.9 34.75 30.38

Table 1: Quantitative results for the DTU dataset.

The upper part of the table [1] [5] is the surface accuracy measured using the
Chamfer 11 loss (measured in mm). COLMAPO is a watertight reconstruction
pipeline with wide selection of features. IDR [0] is the state of the art 3D sur-
face reconstruction method using implicit representation. We can see that VolSDF
performs on par with IDR and outperforms NeRF and COLMAP in terms of re-
construction accuracy. The lower part is PSNR (peak signal-to-noise ratio) which
is used to systematically compare different algorithms, shows that VolSDF is com-
parable with NeRF.

Figure 2: Qualitative results for the DTU dataset.

Qualitative results for reconstructed geometries of objects from the DTU dataset
in Figure [2| [5], where we see that NeRF struggle with the details while VoISDF is
yet comparable with the STOA IDR.
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Scene Doll Egg Head Angel Bull Robot Dog Bread Camera Mean
Chamferl; Qur Improvement (%) 54.0 91.2 243 751  60.7 272 477 34.6 51.8 51.8
PSNR NeRF++ 26.95 27.34 27.23 30.06 26.65 26.73 27.90 31.68 23.44  27.55

VolSDF 25.49 27.18 26.36 29.79 26.01 26.03 28.65 31.24 2297 27.08

Table 2: Quantitative results for the BlendedMVS dataset.

In BlendedMVS; the paper compared VolSDF with NeRF++ [7] since the dataset
has more complex backgrounds. In table [2| [5], VolSDF performs on par with
NeRF++ and the improvement of Chamfer distance is compared to NeRF. In fig-
ure 3| [5], NeRF++ shows artifacts and grains on the surfaces while VolSDF shows
improved reconstructions and more faithful results.

NeRF++

VoISDF

Figure 3: Qualitative results sampled from the BlendedMVS dataset.

4 Discussion / Conclusion

NeRF [3] introduced a neural volume rendering approach, which showed a significant
potential. The paper was followed up with several related works. However, in their
approach, the density component generally yields noisy, imprecise geometry approx-
imations since it is less adept at accurately anticipating the scene’s true geometry.
VoISDF [5] introduced a better approach by taking into account the geomatry side
of the problem. This results in a quality of view synthesis. As shown in the qualita-
tive and quantitative results, implicit function approach struggles with the details
of the object’s surface, and in some cases it loses the details. VolSDF provides a
promosing approach in volume rendering area. However, VolSDF assumes homoge-
neous density of the object which limits the classes of geometry that can modeled.
Secondly, homogeneous texture-less areas are hard to reconstruct faithfully, which
can be avoided by adding an extra assumption before the reconstruction.
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