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Abstract

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in
One Go is a paper written by Marvin Eisenberger, David Novotny, Gael
Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers and An-
drea Vedaldi and published in 2021. In the paper, the authors present an
unsupervised way to find corresponding points of two 3D shapes and interpo-
late their poses while preserving their identities. The method uses a neural
network to extract feature descriptors for explicit mapping of corresponding
points and to generate vectors of interpolation transformation. Testing the
resultant performance using various metrics and datasets shows that Neu-
roMorph matches or outperforms pre-existing supervised, unsupervised and
axiomatic methods at both point correspondence and shape interpolation.

1 Introduction

Constructing a smooth interpolation between two given 3D shapes is a classical task
in 3D computer vision. Such shapes are usually referred to as source and target.
In its traditional form, the challenge is to find a continuous deformation of the
source that would eventually make it identical to the target. Continuity of this
deformation supposes that an intermediate shape can be queried at any time point
along the transformation with an arbitrary precision.

An advanced version of this task — and the main goal of NeuroMorph — is to
interpolate the poses of the two shapes while keeping the identity of the source shape
intact. In other words, by the end of the transformation the source should “mimic”
the overall stance of the target, but not turn into the same shape completely. Instead,
it has to preserve its local structure to be clearly recognizeable at any stage of the
transformation. These constraints are captured, for example, by LIMP [1], whose
loss function separates intrinsic and extrinsic parts of a latent code to disentangle
identity (style) and pose of the object.

In order to produce a continuous interpolation, any method should provide geo-
metric and statistical characterization of the shape space.

Geometric characterization is often realised by considering individual shapes as
points in a high-dimensional space, with their distance to the neighbors correspond-
ing to the difference in their structure. Following this picture, such a space will
contain all technically possible 3D shapes. Any given set of particular samples can
then be viewed as a low-dimensional manifold inside that space. A geodesic path
across this manifold between any two shapes from the dataset will present a con-
tinuous transformation from the source to the target, while keeping all intermediate
shapes geometrically plausible. This turns finding this path into an elegant and
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efficient way to smoothly interpolate two samples. One major drawback of this ap-
proach, however, is the high cost of embedding all given shapes into the manifold.
For this reason, many methods, including LIMP [1], choose to construct the path
without previously building the complete manifold.

Statistical characterization of the shape space varies in the format in which
different models represent the 3D shapes. The most popular ones include 3D voxel
grids, point clouds, 3D meshes and implicit representation. The latter views the
whole space as a 3D field of points containing specific values in relation to the
object. A classical example of this is Signed distance field that maps each point
to its distance from the object’s surface (negative inside the object). However,
some models like ShapeFlow [8], whose goal is not generation but transformation
of a shape, instead employ a velocity field or a time-dependent displacement field.
Here, each point is associated with a 3D vector describing the transformation, and
applying it to the source shape allows to deform it directly. This makes such models
more flexible than LIMP [1] that finds an interpolation in the latent representation.
This is because on top of the main task, models like LIMP have to solve a difficult
problem of generating final shapes from the latent codes, and is thus limited to a
specific family of objects.

In order to produce a continous interpolation, one has to analyse how different
parts of one shape relate to their counterparts in the other. This brings us to the
task of finding the point correspondences. For each source point, the goal is to find a
mapping to an identical or equivalent target point. One should distinguish between
sparse annotation, that involves matching only some points, and a dense one, which
maps all the points of both shapes. Another variation presents a so-called soft
correspondence (described in Section 2.1).

Most previously existing methods for matching corrseponding points required
some degree of supervision. For example, LIMP [1] is trained on shapes with known
pointwise correspondences. Interpolation with preservation of the source shape iden-
tity imposes additional requirements for the deformation, and is thus even more
sensitive to the training data. High cost of obtaining appropriate datasets limits
both quantity and quality of existing methods. Many of them are thus incapable of
interpolating shapes of different object classes.

To overcome the need for pre-existing annotations, ShapeFlow [8] is trained in
an unsupervised manner. However, it does not focus on finding the point correspon-
dences explicitly, which is detrimental in case of large pose variations.

Thus, the idea behind NeuroMorph is that solving both problems explicitly at the
same time does not complicate the two solutions, but makes them benefit from each
other. On top of that, it does it in a single feed-forward pass and is being trained
unsupervised, by matching the corresponding points using local feature descriptors.
Unlike ShapeFlow [8], it does not represent the interpolation transformation with a
dense vector field, but outputs time-dependent vectors for each vertex of the source
shape individually.
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2 Method description

2.1 Goal

NeuroMorph is a machine learning-based method that finds soft point correpondence
by extracting local feature descriptors and produces continous shape interpolation.
It accepts source and the shapes as two 3D meshes X and Y and outputs a corre-
pondence matrix Π and an interpolation flow ∆(t):

f : (X ,Y) 7−→ (Π,∆(t)) (1)

Correspondence matrix Π ∈ Rn×m probabilistically sends the n vertices of the
source to the m vertices of the target. It means that the i’th row of the matrix
corresponds to a vertex pi of the source, and the j’th value in that row states the
probability that pi is mapped to the vertex pj of the target:

Πi,j = P(pi ↔ pj) (2)

Intuitively, it makes the matrix Π row-stochastic, i.e., such that the values in
each row sum up to 1.

The final result of interpolation will eventually be derived as ΠY. Since our
goal is to keep the identity of the source, we do not want to perfectly match it with
the target. The probabilistic format of Π, known as soft correspondece, allows to
control the proximity of the alignment. Using a correct loss function (described
in Section 2.3) can preserve the fine details of the source shape. If needed, hard
correspondence (strict mapping) can be obtained by imposing a threshold on the
values of Π. The results, however, will be rough and noisy, but can be refined using
the Smooth shells [4] as a post-processing step.

Interpolation flow ∆(t) ∈ Rn×3 constitutes a stack of n 3D vectors, each rep-
resenting a shift of a source vertex necessary to produce an intermediate shape at
time t:

X(t) = X+∆(t) (3)

The time parameter t ∈ [0, 1] can specify any moment between initial (0) and
final (1) steps of interpolation with an arbitrary precision. Along the [0, 1]-range,
this must transform the source from its inital configuration to the one closest to the
target (as defined by the probabilistic matching Π):

X(0) = X (4) X(1) = ΠY (5)

2.2 Approach

The trainable neural network that NeuroMorph uses to find corresponding points
does not output Π directly. Instead, it extracts local features of each point. Then,
the method uses them to calculate individual entries of the matrix Π.

First, each vertex of a shape is assigned a feature vector initialized as X̃ =
(X,N), where mathbfX stores the coordinates of all the vertices, and N—their
normal vectors. A normal vector of each vertex is an average of face normals adjacent
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to it. After that, the model refines each feature descriptor using an EdgeConv [18]
graph convolution operator. The procedure is performed in two repeated steps called
local feature aggreagation and global feature pooling.

Local feature aggregation combines a feature vector x̃i of each vertex i with
vectors x̃j of all vertices j in its neighborhood E one by one. Each resultant vector
is passed to a small residual network hΦ, and the resultant updated vector x̃′ is
taken by max-pooling over all the neighborhood:

x̃′
i := max

j:(i,j)∈E
hΦ(x̃j, x̃j − x̃i) (6)

Global feature pooling simply means appending a feature vector of each vertex
with the global maximum across all of them:

x̃′′
i := (x̃′

i, max
1≤i≤n

x̃′
i) (7)

Both steps are repeated iteratively five times (X̃ → X̃′ → X̃′′ → . . .). The
procedure, denoted as Φ, is applied to both source and target and produces a matrix
of vertically stacked feature vectors for each of them:

X̃ = Φ(X ) ∈ Rn×d (8) Ỹ = Φ(Y) ∈ Rm×d (9)

After that, NeuroMorph considers all pairs of vertices and calculates the proba-
bility of their correspondence as a cosine similarity of their feature vectors:

si,j :=
⟨x̃i, ỹj⟩2

∥x̃i∥2∥ỹj∥2
(10)

The results are normalized per-row using softmax operator, and the correspond-
ing values are written as entries of the final matrix:

Πi,j :=
exp(σsi,j)∑m
k=1 exp(σsik)

(11)

The parameter σ here affects the deviation of the per-row probability distribu-
tion. Specifically, it controls how “spiky” concentrated the probability of assigning
one point to another is. When the value is low, the probabilities will be distributed
more evenly.

Derivation of the time-dependent interpolation flow ∆(t) boils down to essentially
the same task of providing a vector per vertex of a given shape. Thus, NeuroMorph
tackles this it using the similar EdgeConv-based architecture. The difference is the
purpose of these vectors, as each defines the displacement of a vertex at time t.
As such, they obviously must be 3-dimensional and time-dependent. To achieve
that, they are initialized by capturing initial positions, distances from the final the
destinations ΠY and the time parameter t, equally broadcasted to all vertices:

Z := (X,ΠY −X,1t) (12)

After that, the procedure is equivalent to the one described above (Z → Z′ →
Z′′ . . . → V) and again repeated five times. The final matrix V ∈ Rn×3 is scaled by
the time parameter t:
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Figure 1: Full architecture of NeuroMorph

∆(t) := tV(t) (13)

The whole architecture of both models in the method is shown in Figure 1.

2.3 Training

Finding a correct point correspondence is enough to produce a simplistic smooth
interpolation, since all that is needed is to move the source points to their corre-
sponding target positions along straight lines. However, two problems will appear
in that case. First, the interpolation will end up turning the source shape into a
target as closely as structurally possible. Our goal, however, is to imitate the target
pose without changing the source identity. Secondly, the intermediate stages of such
an interpolation will generally not care about the intermediate shapes, making the
source unrecognizeable. To tackle these issues, a sophisticated loss function was
constructed training:

ℓ := λregℓreg + λarapℓarap + λgeoℓgeo (14)

The function was derived with two goals to be achieved by interpolation: to
bring the source as close as possible to the target and to preserve its identity in the
process. The function affects both point correspondence and shape interpolation and
consists of three components: registration loss, as-rigid-as-possible loss and geodesic
distance preservation loss.

Registration loss is responsible for minimizing the distance between the target
and the shape XT that the source turns into by the end of interpolation.
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ℓreg(XT ,Y,Π) := ∥ΠY −XT∥22 (15)

Applying registration loss is enough to achieve a naive deformation that would
turn source into target (almost) exactly. The only way to preserve the identifying
details of the source is to transform in rigidly. A rigid transformation allows transla-
tion and rotation of the object, but not stretching, scaling or changing its topology.
A perfectly rigid transformation is impossible when our goal is to alter the object’s
pose. However, the following metric [16] allows to penalise deviating from it:

Earap(Xk,Xk+1) :=
1

2
min

Ri∈SO(3)
i=1,...,n

∑
(i,j)∈E

∥Ri(Xk,j −Xk,i)− (Xk+1,j − k+ 1, i)∥22 (16)

While t ∈ [0, 1] represents a continous range of time values, the training is
done on discrete steps. In the equation above, the current step is denoted with k.
Applying this metric to the samples from all used time steps produces a function
known as as-rigid-as-possible loss [16] — the second component of the loss used for
training NeuroMorph:

ℓarap(X0, . . . ,XT ) :=
T−1∑
k=0

Earap(Xk,Xk+1) + Earap(Xk+1,Xk) (17)

Finally, to decrease the amount of local stretch of the mesh, a geodesic distance
preservation loss is used. Given geodesic distances between all pairs of vertices in
both shapes in a form of matrices DX and DY , its goal is to preserve them after the
interpolation:

ℓgeo(Π) := ∥ΠDYΠ
T −DX∥22 (18)

To enable unsupervised training of the model, the correspondence matrix Π used
in equations 16 and 18 is the one constructed by the model itself.

3 Experiments and results

The performance of NeuroMorph on both solved tasks were tested separately.
For finding point correpondence, the first dataset that NeuroMorph and its com-

petitors were tested on is FAUST. It contains shapes of 10 humans in 10 different
poses each. The tests were done on a newer version of the datset, where each shape
was re-meshed individually. This makes the task more challenging, but the tests pro-
duce more realistic results. The second one, called SHREC20, contains 14 shapes
of different animals. A good feature of these shapes is that they are non-isometric,
i.e., contain varying topology — added holes, incomplete geometries etc. A draw-
back of this dataset is that the ground truth labelling of corresponding points there
is sparse. This does not allow to use most supervised methods on it. To leverage
the best features of both datasets, a new one was created specifically for this test-
ing. G-S-H (Galgo, Sphynx, Human) dataset contains shapes of a dog Galgo, a
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cat Sphynx and a Human in various poses. Unlike most other datasets, it combines
non-isometries with dense ground-truth labels.

The performance of different methods was compared using Princeton benchmark
protocol [9]—the metric is a geodesic distance between predicted and ground-truth
matches normalized by the square root area of the mesh. Some of the tested meth-
ods, including NeuroMorph, use post-processing refinement. For those, the perfor-
mance on FAUST was compared both with and without these steps, as shown in
Table 1. The results obtained using unsupervised methods on other datasets can be
seen in Figure 2. NeuroMorph has shown itself as superior to all its competitors on
all three datasets.

err. p.p. w/o p.p.

A
xi
om

. BCICP [13] 6.4 — —
ZoomOut [11] 6.1 — —
Smooth Shells [4] 2.5 — —

S
u
p.

3D-CODED [6] 2.5 — —
FMNet [10] 5.9 PMF [17] 11
GeoFMNet [2] 1.9 ZO [11] 3.1

U
n
su
p.

SurFMNet [14] 7.4 ICP [12] 15
Unsup. FMNet [7] 5.7 PMF [17] 10
Weakly sup. FMNet [15] 1.9 ZO [11] 3.3
Deep shells [5] 1.7 — —
NeuroMorph 1.5 SL [4] 2.3

Table 1: Comparison of testing results
for various point matching methods on
FAUST. The measurements are given as
mean geodesic error. Some methods in-
clude post-processing refinement using
additional methods (PMF [17] — prod-
uct manifold filter, ZO [11] — ZoomOut,
ICP [12] — iterative closest points, SL [4]
— smooth shells).

SHREC20

FAUST

Figure 2: Geodesic error of unsupervised
correspondences in percent of diameter.

For shape interpolation, other than FAUST, the performance was tested on
MANO — a dataset of shapes of a human hand in various poses.

Two metrics were used for comparison. Conformal distortion measures deforma-
tion of individual mesh triangles during the transformation. Assuming that inter-
polation is described as a linear function F (X ) = AX + b, the metric is calcualted
as

κF (A) =
trace(ATA)

det(A)
(19)

The second metric, Chamfer distance, is traditionally used for point clouds. It
estimates general similarity of shapes by summing and normalizing square distances
of each point in one shape to the closest one in another:

CD(S1, S2) =
1

S1

∑
x∈S1

min
y∈S2

∥x− y∥22 +
1

S2

∑
y∈S2

min
x∈S1

∥y − x∥22 (20)

The results measured with both metrics are displayed in Figure [?]. Here, Neu-
roMorph was compared against Hamiltonian interpolation [3], LIMP [1] and Shape-
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Figure 3: Performance of three 3D shape interpolation methods in comparison to
NeuroMorph, measured using Chamfer distance and conformal distortion

Flow [8]. It has performed on par with Hamiltonian and overtaken both other
competitors.

4 Discussion / Conclusion

As shown in Table 1, NeuroMorph is superior to all of its competitors in finding
corresponding points on the remeshed FAUST dataset. Sometimes, it was the case
even without the post-processing step. Its better performance on other two datasets,
illustrated on Figure 2, can be explained by the fact that other methods assume
isometric nature of shapes, which the shapes there do not satisfy.

For shape interpolation, ShapeFlow [8] has shown the worst performance of all
considered approaches. Despite being similar to NeuroMorph in being trained unsu-
pervised, it does not explicitly find the point correspondence as part of the solution,
which can explain its inferior results. LIMP [1] is a supervised method, requiring
ground-truth labelling of points at the training time. But despite showing a bet-
ter outcome than ShapeFlow, it still loses the battle to NeuroMorph. However, the
most surprising was the comparison against Hamiltonian interpolation [3], which has
shown itself almost exactly the same way in both metrics despite being an axiomatic
method that requires point matching even at test time.

Overall, we see that separating the two tasks and inventing a separate method
for solving each of them was a major disadvantage of the previous approaches.
Considered them together, conversely, improves the quality of solution for both
problems and produces results comparable and superior to supervised and axiomatic
methods.
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