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Abstract

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller pre-
sented their paper ” Instant Neural Graphics Primitives with a Multiresolution
Hash Encoding” [4] at SIGGRAPH 2022, where it won the best paper award.
It establishes a hash encoding on multiple resolutions that offers near-instant
training of several neural graphics primitives. They evaluate it on 3D signed
distance functions (SDF), gigapixel images, neural radiance caching, and neu-
ral radiance and density fields (NeRF). Its efficient implementation provides
almost instant training and high quality on all evaluated primitives. The exact
implementation and hyperparameters can be used for all experiments, making
it task-agnostic, while the hash table size is used for trading off quality and
training time.

1 Introduction

Simple primitives in computer graphics describe elements like an arc, a square, or
a cone, from which more complicated objects or images can be built. They are
defined by a mathematical function that fully describes their appearance, given a
set of parameters. This concept can be extended to more complex primitives.

The authors of the presented paper came up with an encoding of the input of so-
called neural graphics primitives, which are graphics primitives that are described
by a neural network.

This parameterization is evaluated on the following four neural graphics primitives:

1. Gigapixel image: a mapping from 2D coordinates to RGB colors of a high-
resolution image is learned

2. Neural signed distance function (SDF): a mapping from 3D coordinates
to the distance to a surface is learned

3. Neural radiance caching (NRC): the 5D light field of a given scene from
a Monte Carlo path tracer is learned

4. Neural radiance and density fields (NeRF): the 3D density and 5D light
field of a given scene from image observations and corresponding perspective
transforms is learned

Lately, parametric encodings of inputs for neural networks have achieved state-of-
the-art results. These parametric encodings arrange additional parameters (e.g.,
positional information, etc.) in a data structure like a grid or a tree in order to
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be able to look up and interpolate them. Although these encodings consume more
memory, the computational cost can be reduced, and they tend to yield better
accuracy than non-parametric encodings.

Figure (1] illustrates the trade-offs of these parametric encodings and motivates the
author’s approach. The dense structures in parametric encodings use the same
number of features for empty areas (less important) as it uses for areas around the
surface (more important). Furthermore, as natural scenes present smoothness, a
multi-resolution decomposition seems rational. The multiresolution hash encoding
presented in the paper tackles both problems.
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Figure 1: Reconstruction quality using different encodings and parametric data
structures for storing trainable feature embeddings

2 Method description

Additional to the ordinary trainable parameters ¢ of a neural network, this approach
comes with trainable encoding parameters 6, which are arranged into L resolution
levels. FEach level L contains up to T feature vectors, with each vector having
dimension F'.

The resolution of each level L is chosen to be a geometric progression between the
coarsest and finest resolutions [Nyin, Nimaz), With Npe, matching the finest detail in

the training data:
INnNyaz — INNpin
b= 1
(eI (1)

Nl = Nmm * bl (2)

Let’s assume that we want to apply the multiresolution hash encoding in 2D. As a
first step, we divide the input into voxels of size N; as described in Formula [T} with
L = 2. Once that’s done, we look for the voxel that contains input z. Each corner
of the voxel corresponds to a feature vector in the hash table.

We look up the corresponding F-dimensional feature vector of each corner and lin-
early interpolate them corresponding to the relative position of input x.

These steps are continued for all resolution levels L, and each of the interpolated
vectors is concatenated to a vector of size L x F'. Additionally, an auxiliary input
¢ € R¥ is concatenated at the end to yield the encoded vector y € RFFTF. This
auxiliary input can be something like the view direction and material parameters
when learning a light field.
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This vector is used as input for a small neural network. In order to train the
encoding, the loss gradients are backpropagated through the neural network, the
concatenation, the interpolation, and in the end, accumulated in the looked-up fea-
ture vectors. The whole encoding process is illustrated in Figure [2]
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Figure 2: Multiresolution Hash Encoding

2.1 Hash Collision

In lower resolution levels, the hash table is large enough to hold the feature vectors
for each corner of the voxels in its unique spot. However, with higher resolutions,
it’s probable that some hash table elements have to house more than one feature
vector. This is called a hash collision.

If a hash collision occurs, the feature vectors are averaged, meaning that the largest
gradients, which are most relevant to the loss function, will dominate. Although
one could expect inaccurate results because of these collisions, the encoding is able
to reconstruct scenes accurately. This is due to the different resolutions that are
complementing each other with their own strengths.

2.2 Hyperparameters
2.2.1 Hashtable size T

Figure |3| visualizes the impact of the hash table size T with respect to training time
and quality. While a larger hash table size T yields a more accurate result, it takes
longer to train the encoding. In all shown examples, the performance is growing
slower after a hash table size of 2!, which can be explained by the cash of their
hardware (RTX 3090 GPU) getting oversubscribed.
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Figure 3: Hyperparameter T: Hash table size

2.2.2 Resolution Level L

The choice of numbers of resolution levels L. and the feature vector’s dimensionality
F trade off quality and performance as well. Figure [4illustrates this trade-off while
keeping the number of trainable parameters F' T x L at 224 for SDF and NeRF and
228 for Gigapixel images.

The authors found L = 16 and F = 2 to be the optimal choice for their tests.

Gigapixel image: Tokvo Signed Distance Function: Cow Neural Radiance Field: LEco
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Figure 4: Hyperparameter L and F: Resolution level L. and feature vector dimen-
sionality F

3 Experiments and results

As discussed earlier, the authors evaluated the encoding on four different neural
graphics primitives and compare it to previous encodings.

3.1 Gigapixel Image

With the state of the art method of adaptive coordinate networks (ACORN) [2], a
PSNR of 38.59 dB is achieved on the Tokyo panorama from figure [5| after 36.9h of
training. The authors achieved the same PSNR with their encoding after a training
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time of only 2.5 minutes. This showcases the drastic speedup of the multiresolution
hash encoding.

Trained for 1 second 15 seconds 1 second 15 seconds 60 seconds reference
2 37 57 57

7

Gigapixel image

Figure 5: Gigapixel training stages and ACORN as reference. Tokyo gigapixel
photograph (C) Trevor Dobson (CC BY-NC-ND 2.0)

3.2 Signed Distance Function

In Figure [6] the authors compare Neural Geometric Level of Detail (NGLOD) [5]
and the frequency encoding [3] with their encoding. While NGLOD achieves the
highest reconstruction quality, it is easy to see, that the frequency encoding strug-
gles to learn sharp details of the models.

The new encoding produces roughly equal quality in terms of intersection over
union, but it produces rough surfaces, rather than the smooth surfaces produced

by NGLOD.

Hash (ours) NGLOD Hash (ours)  Frequency Frequency ~ Hash (ours) Hash (ours)
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22.3M (params) 12.2M 124.9k
1:56 (mmss) 1:14 1:32
0.9777 (loU) 0.9812 0.8432

11.1 M (params) 124.9k 12.2M 24.2M

1:37 (mm:ss) 1:19 1:35 1:21 1:04 1:50
0.9911 (loU) 0.9872 0.8470 0.7575 0.9691 0.9749

Figure 6: Signed distance function (SDF)

3.3 Neural Radiance Caching

The multiresolution hash encoding is compared against the triangle wave encoding
[6] in ﬁgure It yields much sharper results while having slightly worse performance.
Interestingly, while the shadows are sharper with the multiresolution hash encoding,
they look more realistic with the triangle wave encoding.



Instant Neural Graphics Primitives with a
Schneidt, Lukas Michael Multiresolution Hash Encoding

Multiresolution hash encoding (Ours), T = 15, 133 FPS Triangle wave encoding [Miiller et al. 2021], 147 FPS

Far view Medium view Far view Medium view
7 7 = n

Figure 7: Neural radiance caching (NRC)

3.4 Neural Radiance and Density Fields (NeRF)

The table in Figure [§] compares the quality of neural radiance and density fields with
different encodings after a specific training time. The gold, silver and bronze circles
highlight the best encoding for each reconstructed 3D model. Very good results are
achieved by mip-NeRF [I] on all models after a training time of hours. However,
we can see that the new multiresolution hash encoding achieves similar results after
a training time of only 5 minutes. Once again, this highlights the massive speedup
and the power of the encoding created by the authors.

Mic Ficus CHAIR Hotpoc MATERIALS Drums SHIP LEco avg.
Ours: Hash (1s) 26.09 21.30 21.55 21.63 22.07 17.76 20.38 18.83 21.202
Ours: Hash (55s) 32.60 30.35 30.77 33.42 26.60 23.84 26.38 30.13 29.261
Ours: Hash (15s) 34.76 32.26 32.95 35.56 28.25 25.23 28.56 33.68 31.407
Ours: Hash (1 min) 35920 33.05@ 34.340 36.78 29.33 25.82 30.20 ® 35.63 @ 32.635@
Ours: Hash (5 min) 36.22 33.51 35.00 37.40 29.78 @ 26.02 31.10 36.39 33.176
mip-NeRF (~hours) 36.51 33.29 35.14 37.48 30.71 25.48 @ 30.41 35.70 33.090
NSVF (~hours) 34.27 31.23 33.19 37.14 @ 32.68 25.18 27.93 32.29 31.739
NeRF (~hours) 32.91 30.13 33.00 36.18 29.62 25.01 28.65 32.54 31.005
Ours: Frequency (5 min) 31.89 28.74 31.02 34.86 28.93 24.18 28.06 32.77 30.056
Ours: Frequency (1 min) 26.62 24.72 28.51 32.61 26.36 21.33 24.32 28.88 26.669

Figure 8: Comparison of encodings for Neural radiance and density fields (NeRF')

4 Conclusion

The proposed multiresolution hash encoding gives a learning based encoding, with
many benefits. Due to multiple resolutions, it automatically focuses on relevant
details. It is furthermore independent of the task and can be used for several appli-
cations such as gigapixel images, signed distance functions, neural radiance caching
and neural radiance and density fields. Training a NeRF is speed up by several or-
ders of magnitude and all other evaluated neural graphics primitives yield promising
performance and quality of reconstruction. The hash collisions produce very small
errors, which are especially noticeable in the example of signed distance functions.
The treatment of such hash collisions could be explored in a future work.
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