Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

DiffusionNET: Discretization Agnostic Learning
on Surfaces

Til Stotz

Department for informatics - Technische Universitat Miinchen

Abstract

In the paper DiffusionNET: Discretization Agnostic Learning on Surfaces
(2022), the authors Nicholas Sharp, Souhaib Attaiki, Keenan Crane and Maks
Ovsjanikov present a novel network architecture for deep learning on 3D sur-
faces, called DiffusionNET. Its main advantages are its ease of implementa-
tion, efficiency and robustness to sampling techniques, different resolutions
and applicability to different representations. Three simple ingredients en-
dow the network with those advantages: A standard Multi-Layer Perceptron
(MLP), a diffusion method applied to 3D surfaces, and spatial gradient fea-
tures [5].

1 Introduction

DiffusionNET is an inventive plug-and-play neural network for deep learning on 3D
surfaces. Its main advantages are its simple architecture, the robustness to sampling
techniques, varying resolutions and different representations and its efficiency, out-
performing most other architectures at common benchmarks. The only ingredients
are a standard multi-layer perceptron, a diffusion mechanism and spatial gradient
features. To emphasize why DiffusionNET is so successful, let’s begin by looking
at two related architectures that have been widely adopted due to their individual
success: PointNET and Dynamic Graph CNN (DGCNN). There are certainly di-
verse related architectures and different extensions, but related work will be limited
to those two in this paper.

PointNET was a pioneering architecture that was directly applicable to point
clouds, which made it possible to use such data without a prior transformation to
3D voxel grids. Due to its unified architecture, PointNET could be used for ob-
ject classification, part segmentation and scene semantic parsing, achieving (at that
time) on-par or better than state-of-the-art performance at these tasks. A simplified
architecture of PointNET is shown in Fig. [1} taken from [3]. Each point in a point
cloud is modeled independently using several shared MLPs, aggregating each output
into a global feature using some aggregation function, e.g., a max pooling opera-
tion []. However, with this architecture two disadvantages become clear. First,
the architecture itself can only use point clouds as input. Real-world data comes
from a variety of sources, tying a network architecture to a particular representation
thus limits the amount of available training data. Second, because the features are
learned using independent MLPs, the local structural information between points
cannot be captured. Therefore, in non-rigid shape analysis, where the 3D position
of points changes between transformations, PointNET cannot achieve significant
results.

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

MLPs max pooling

—>
sha:red

Figure 1: The PointNET architecture consists of several independent MLPs with
shared weights, making it impossible to capture local structural information [3].

input points

I Points Graph Feature Learning o Points
nput Foints Construnction & Pooling Julput Foints
[]
o ® X ©
"
® @] # \4 # % J é ®
* o 0\ <~\. o o
O ® \ _\ "

Figure 2: The DGCNN architecture works by creating a graph from a point cloud
and learning edge weights between nodes in the graph [8, [3].

One approach at capturing local structural information was developed by Wang
et al. in a paper titled "Dynamic Graph CNN for Learning on Point Clouds”
(DGCNN). Instead of operating directly on point clouds, the authors proposed to
consider each point in a point cloud as a vertex of a graph, shown in Fig. [2
Convolution is then implemented through a standard MLP over spatial neighbors.
A subsequent pooling produces a coarser graph, aggregating information from the
neighborhood of each point. In the network architecture, this is implemented by an
FEdgeConv operation, which aggregates edge features from connected vertices. The
edge features themselves are learned by the network between two point pairs. This
procedure allows for the incorporation of local neighborhood information, allows
to learn global shape properties and can propagate information over long distances
[8, B]. However, one major drawback becomes clear when applying DGCNN to
dense point clouds. Since the network is based on learned edge features between
point pairs, increasing the density of a point cloud increases the number of edges. In-
formation propagation across a shape is then slowed down, since a feature essentially
needs to traverse more edges than in a shallow point cloud.

In contrast to PointNET, DiffusionNET generalizes its applicability not only to
point clouds and meshes, but also captures local structural information, achieving

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

meaningful results in non-rigid shape analysis. Remarkably, instead of trying to
define a convolution and pooling operation like in DGCNN, DiffusionNET propa-
gates information using the technique of diffusion, which is not only a much simpler
operation, but also makes information propagation robust against the density of
meshes or point clouds. Section 2 explains diffusion and its interaction with the
other ingredients in detail.

2 Method description

The DiffusionNET architecture consists of three main ingredients that interact in
the overall network architecture. These are a standard multi-layer perceptron, a
diffusion method to propagate features, and spatial gradient features to extend the
filter space. After a review of these individual ingredients their overall interaction
in the network architecture is explained.

Multi-layer Perceptron: The first ingredient of DiffusionNET is a simple
multi-layer perceptron. The MLP models a pointwise function f : RP? — RP,
applied independently at every vertex, transforming D scalar features at each one. A
standard MLP does not allow to capture the spatial structure of a surface. Therefore,
the authors implemented a diffusion mechanism, which will be introduced in the
following.

Diffusion: The purpose of diffusion is to spatially propagate features across a

mesh or point cloud. Intuitively, it can be thought of as a global smoothing process
modeled over time. Diffusion is typically modeled by the heat equation, where the
rate of diffusion of a scalar field u is given by its Laplacian:
%ut = Ay, (1)
Fig. [3] shows how diffusion operates on a 3D mesh. Beginning at the left, after .01
seconds the point source (yellow star) propagated its features to the neighboring
region, shown in blue. Increasing the diffusion time ¢ will increase the distance of
propagation. For example, after .5 seconds, the features were propagated across the
entire mesh. The key concept of diffusion is simply learning the optimal diffusion
time ¢, which allows the network to learn local, but also totally global support. This
is implemented by a diffusion layer, which is shown again in the overall network
architecture.

Eq. |1f is used in the continuous setting. When working with meshes and point
clouds however, diffusion must be discretized. This is done by replacing the Lapla-
cian A by two matrices L € RY*Y and M € R"*Y, with V being the size of the
mesh or point cloud. For meshes, the authors are using the cotan-Laplace matrix,
where V' captures adjacency information and M measures cell ares of vertices. For
point clouds, the authors use a different Laplacian form described in [6].

The resulting differential equation can then simply be solved for any diffusion
time ¢t. However, the authors observed that using simple Euler methods to solve
this equation may not scale well to large problems. Instead, they found spectral
acceleration greatly increases performance. First, an eigenvalue decomposition of
the matrices L and M is performed, finding the eigenvalues \; and stacking all

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

block 0 block 1 block 2 block 3
L

count
R

| -
0 .25 5
learned times

Figure 3: Diffusion is used to propagate features across a mesh. Longer diffusion
times correspond to an increasingly global information propagation. The diffusion
time is learned by the network.

+1

O O .

diffusion + MLP + gradient features

Figure 4: Endowing the network with spatial gradient features enables it to not only
realize radially-symmetric filters (left), but also directional filters (right).

eigenvectors to create ®. Then, computing diffusion in the spectral domain boils

down to
e—/\ot

he(u) = @ | et | o (& Mu) (2)

with o denoting the Hadamard product. Intuitively, this corresponds to a projection
into the spectral basis (right-hand side multiplication), computation of the diffusion
for time t (middle part), and reprojection (left-hand side multiplication by ®). Eq.
shows that computing diffusion can now be expressed by an elementwise exponen-
tiation, speeding up computation time. This form of spectral acceleration enables
the network to work with very large meshes or point clouds.

Spatial Gradient Features: Relying only on a diffusion layer would limit the
network to radially-symmetric filters only. To extend the space of possible filters,
spatial gradient features are used. Fig. [] shows that endowing the network with
these features enables it to implement directional filters. Given a mesh or point
cloud of size V, spatial gradient features are found by the following steps:

1. Define a tangent plane at every vertex
2. Project neighboring vertices into the tangent plane

3. Estimate the gradient (e.g. least-squares) in tangent plane

4

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

Figure 5: Spatial gradients are computed in the tangent plane of each vertex. The 2D
gradients are estimated via least-squares approximation and expressed as complex
numbers.

Fig. |o| visualizes these steps. Gradients are expressed by complex numbers, where
the axes of the tangent plane correspond to the real and imaginary part. Formally,
this can be written as z, = Gu, where G € CV*V takes care of projecting each
feature channel u and estimating its gradient. After stacking all gradients of all
channels to form w,, scalar features are learned via:

g0(i) = tanh(Rez (i) Aijw,(4))) (3)

Essentially, pairs of gradients are transformed by the coefficient A;;, then their dot
product is calculated, exploiting the notation of complex numbers. The outer tanh
is a simple activation function. Importantly, the coefficient A;; is the only learned
parameter in this ingredient and is sufficient to enable the network to work with
directional filters.

Network architecture: The three ingredients are implemented in one Diffu-
sionNET block, see Fig. [6] First, the input features are diffused by a diffusion
layer, learning the diffusion time ¢ per feature channel. Subsequently, gradients are
computed and new features are learned via Eq. [3] Both outputs of these layers
and the initial features are then concatenated before they go into the MLP, thus
the first layer of the MLP has 3N weights. The final output is added to the initial
input features to stabilize training. This DiffusionNET block can be repeated as
often as suitable, adjusting the last layer depending on the task at hand. Another
advantage of this architecture is the ability to precompute many operations. This
includes the Laplace and mass matrices, the gradient matrix and, if spectral accel-
eration is used, the eigenbasis of L and M. For the feature selection, the most basic
approach is taking the raw 3D position of vertices. To make the network invariant to
orientation-preserving deformations, heat kernel signatures (hks) [7] are preferred.

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

DiffusionNet block Computing diffusion hy(u)
T _ =
scalars addmon implicit timestep h,(u) := (M + tL)” Mu
per-vertex or
fast spectral solve oot
- precompute _ ho(u) = ® [e M | © (@7 Mu)
1 Laplace & R fell _ - precompute . B
LM spatia spatial t b)
‘mass matTlx : diffusion grad]ent features conca per-vertex MLP P~ 1 [
! spatial | he () zu — Gu 3N,N,N,N BN Q= do ¢
I gradient G | tearned [] R VAVAVAVAREE Sl NGRS
] s ‘ earned t — [zu]o leamed we;ghts ‘ - : |
: X g per-channel tanh(Re Wy O Awy)) Tl | L[’bf' - ﬁiM¢']
elgen asis wi H eigenbasis
\ (optlonal) ,‘ learned A ‘\ __ % ,,,,, y

Figure 6: A DiffusionNET block implements all three ingredients: A diffusion layer
for spatial propagation, spatial gradient features to realize directional filters and a
standard MLP.

ng % -~ ‘x‘ "7‘ ‘ Method Accuracy
len o P J , =¥ || GWCNN [Ezuz et al. 2017] 90.3%
L o . L 5 ’ Mes]}CNN"' [Hanocka et al. 2019] 91.0%

w3 \,“\ s ‘/{{, @ || HN' [Wiersma etal 2020) 96.1%

| MeshWalker" [Lahav and Tal 2020] 97.1%

— &? -ﬁ’ > < ﬁ o PD-MeshNet" [Milano et al. 2020] 99.1%
£l | HodgeNet! [Smirnov and Solomon 2021) 94.7%

| FCt [Mitchel et al. 2021] 99.2%,

birdl g~ \O/ t ‘ Y \ DiffusionNet-xyzf 99.4%
J | DiffusionNet - xyz 99.0%

. - DiffusionNet - hks’ 99.5%
e OO X Jp qf A€ \ DiffusionNet - hks 99.7%

Figure 7: Classification accuracy of different architectures on the SHREC-11 dataset,
xyz stands for 3D position as features, hks for heat kernel signatures. DiffusionNET
achieves new state-of-the-art accuracy.

3 Experiments and results

DiffusionNET produces state-of-the-art results for many different topics, including
classification, molecular- and human segmentation, vertex-labelling correspondence,
functional correspondence, runtime and efficiency and many more. Due to the scope
of this paper, the presented results are limited to the former three tasks.

Classification: For all benchmarks, the authors use a 4-block DiffusionNET
architecture with varying network size depending on the task. The network itself
is trained using the ADAM optimizer. Fig [7] shows DiffusionNET’s performance
at classification on the SHREC-11 dataset. The dataset consists of 30 categories
with only 20 shapes per category. Even when using the 3D position as features,
DiffusionNET already achieves state-of-the-art performance, improving even more
when using heat kernel signatures instead.

Segmentation: Similarily, DiffusionNET achieves state-of-the-art accuracy at
segmentation. Fig. [§ visualizes how a 128-width DiffusionNET architecture seg-
ments an RNA surface mesh with a size of about 15k vertices. Each vertex has to
be labelled correctly to one of 259 atomic categories. Training data stems from the
Protein Data Bank [I]. As shown in the figure, DiffusionNET not only produces
accurate results for meshes, but is also directly applicable to point clouds.

Discretization Agnostic Learning: To emphasize DiffusionNET’s robustness
to changes in discretization, different architectures were trained on differently dis-

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

ground truth mesh prediction point cloud prediction

Figure 8: Visualization of a segmentation of an RNA molecule by DiffusionNET.
The architecture is applicable to both meshes and point clouds.

cretized inputs and compared results to DiffusionNET. The discretization techniques
include isotropic discretization, variable density meshes, quadric simplification and
a sampled point cloud. Fig. [9] shows performances of selected architectures at
vertex-labelling correspondence on the FAUST dataset [2]. First, DiffusionNET
clearly achieves high-quality results independent of the discretization technique, of-
ten achieving best accuracy curves. Second, some architectures work better on the
original mesh, but their accuracy quickly diminishes for other discretizations. For
example, while ACSCNN achieves almost constant 100% accuracy on the original
mesh, it only reaches about 50% accuracy on a mesh with variable density. This is
true for many other existing architectures, showing that they tend to overfit to the
mesh structure. On the contrary, DiffusionNET’s accuracy remains almost constant,
generalizing better to different discretizations.

4 Discussion

DiffusionNET replaces complex geometry processing operations by a simple and sta-
ble diffusion operation. Using diffusion only does not reduce the expressive power of
the network for which the authors provide a proof, showing that radially-symmetric
convolutions are contained in the function space defined by diffusion followed by a
pointwise map (implemented by the MLP). Spatial gradient features inject direc-
tional information, extending the space of possible filters. Compared to PointNET,
this allows DiffusionNET not only to directly work with different representations,
the local spatial information captured by diffusion also enables the network to work
with non-rigid transformations. Unlike DGCNN, which can also capture local spa-
tial information but at the cost of bad performance for large meshes, DiffusionNET
remains robust against high-resolution inputs and works with 180k vertex meshes.

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

Original (orig) Isotropic (iso)

100%)

50%]

0%

5 10 5 10
Variable Density (dense) Quadric Simplification (qes)
100% o -
V4
/
1
I
50%) /
|
0% 5 10
Sampled Point Cloud (cloud) = == DiffusionNet
100%
ACSCNN
s SplineCNN
HSN

50% m—— PointNet (vertices)

e PointNet (sampled)
mes DGCNN (vertices)
DGCNN (sampled)/

Figure 9: DiffusionNET generalizes across different discretization techniques, achiev-
ing almost constant accuracy curves. The x-axis is the geodesic error x100, the y-axis
is the percent of predicted correspondences within that error.

However, there do exist some limitations where diffusion struggles to produce
good results, shown in Fig. [I0] As DiffusionNET leverages the geometric structure,
it is prone to errors if this structure is disconnected into single components (Fig.
left). In such cases, diffusion does not allow for any communication at all, leading
to incorrect segmentation results. Topological merging presents another difficulty.
Such merges happen due to small errors in scanning processes to create 3D meshes
or point clouds. For example in Fig. [L0]in the middle, the hand of the person merges
with the chest. In this case, diffusion can now happen directly between the chest
area and the hand, whereas in reality diffusion would happen beginning at the chest
area and then across the shoulder and arms.

)

4

- -
g)
:

A

Figure 10: Left: Disconnected components lead to incorrect segmentation, infor-
mation cannot be propagated. Middle and right: Topological merging results in
incorrect diffusion between merged body parts (shown in red).

Til Stotz DiffusionNET: Discretization Agnostic Learning on Surfaces

References

1]

3]

8]

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic acids research,
28(1):235-242, 2000.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. Faust:
Dataset and evaluation for 3d mesh registration. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 3794-3801, Columbus,
Ohio, USA, 2014.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun. Deep learning for 3d point clouds: A survey. CoRR, abs/1912.12033,
2019.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d classification and segmentation. CoRR,
abs/1612.00593, 2016.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusion
is all you need for learning on surfaces. CoRR, abs/2012.00888, 2020.

Nicholas Sharp and Keenan Crane. A laplacian for nonmanifold triangle meshes.
Computer Graphics Forum, 39(5):69-80, 2020.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably infor-
mative multi-scale signature based on heat diffusion. Computer Graphics Forum,
28(5):1383-1392, 2009.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic graph cnn for learning on point clouds. CoRR,
abs/1801.07829, 2018.

	Introduction
	Method description
	Experiments and results
	Discussion

