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Abstract

”IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from
Photometric Images” was published in 2022 by Zhang, Kai, et al. It is a novel
inverse rendering pipeline that applies hybrid optimization of neural fields to
obtain meshes and material textures from a set of photometric images. The
optimization stages optimize a thick surface via a volumetric radiance field
and refine the surface by edge-aware physical-based surface rendering. The
second step of optimization proposes a new edge sampling algorithm for SDFs
according to mesh-based differentiable rendering. Compared to its baseline
(DRV), this method could obtain a more precise shape and appearance.

1 Introduction

Reconstruction of real-world objects and scenes is a prevailing topic that can be
applied in various scenarios, such as autonomous driving and movie scene construc-
tion. Inverse Rendering is a powerful way to obtain 3D objects from 2D images.
One method for inverse rendering is fully differentiable Monte Carlo path tracing
methods [2], which focus on realistic functions and equations. The challenge of this
method lies in computing the edge derivatives. For mesh-based differentiable ren-
dering, shape optimization is also difficult to process because of changing topology
and avoiding self-intersection; for signed distance field representation, recent studies
only consider interior derivatives and ignore edge derivatives [8]. The other inverse
rendering direction concentrates on neural representations for the radiance field.
The limitation of this method reflects in the difficulties of disentangling material
from lightning. Furthermore, The details of the shape and appearance in NeRF
could not be fully presented since volume rendering is rough based on volume den-
sity [4]. IDR utilizes surface rendering, which could obtain better performance but
constraints application scenarios [8].

For this sake, IRON introduces a novel approach for inverse rendering with better
performance. IRON makes use of neural representations for geometry and materials.
A two-step optimization scheme, namely volumetric radiance field and edge-aware
physical-based surface rendering, could recover an object with more accurate geom-
etry and sharper texture details. The whole process starts from a set of photometric
photos, transfers the data into neural representations for optimization, and finally
obtains the object in the form of mesh with textures (The pipeline is shown in Figure
1). The improvement of this method is that it disentangles materials with lightning,
and based on the new edge sampling method, it could recover the 3D object more
precisely [9].
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Figure 1: Pipeline of IRON

2 Method description

The proposed method works for opaque objects without ambient light and ignores
shadows for efficiency. Under the conditions mentioned above, the IRON system
could optimize the neural shape and material representations through two stages
when provided with input photometric images. The first stage is the volumetric
radiance field, which aims to recover the correct object topology and serves as an
initialization for the second phase. The second stage is trying to refine geometric
details and factorize materials from lighting. Four compact MLPs are Neural SDF
SΘS

: x → (S, f), Neural diffuse albedo βΘβ
: (x, n, n, f) → β, Neural specular

albedo κΘκ : (x, n, f)→ κ, Neural roughness αΘα : (x, n, f)→ α, where x, n, f are
3D location, surface normal and feature descriptor.

2.1 Volumetric radiance field rendering

The volumetric radiance field optimizes neural SDF (SΘS
) and diffuse albedo (βΘβ

)
to rebuild the geometry. This phase makes use of the method declared by the
former research NeuS. Compared to the surface rendering method IDR and volume
rendering method NeRF, NeuS is effective in complex geometries and self-occlusion.
Surface rendering IDR can hardly process abrupt depth change since it considers
only a single surface intersection of each ray. On the other hand, volume rendering
NeRF can handle sudden depth changes, but the reconstruction results are noisy.
NeuS uses a novel volume rendering to learn a neural SDF representation, which
could get a more accurate and robust surface representation. The comparison of
these three methods is shown in figure 2 [7].

Figure 2: Reconstruction Performance Comparison of IDR, NeRF and NeuS [7]

The NeuS could train the neural representations by 2D supervision. Given a
pixel, the corresponding ray emitted from the pixel is defined as {p(t) = o+ tv|t ≥ 0},
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and the color of the pixel is expressed as an integral:

C(o, v) =

∫ +∞

0

w(t)c(p(t), v)dt (1)

o, v, w(t) are camera center, unit direction vector of the ray, and weight of
point p(t) in the observation direction v. And w(t) should fulfill two requirements,
unbiased and occlusion-aware, namely the point near the surface and the camera
should have a greater weight to the final result. The weight function in standard
volume rendering formulation is denoted as the equation below.

w(t) = T (t)σ(t), where T (t) = exp(−
∫ t

0

σ(u)du) (2)

σ(t), T (t) are volume density and accumulated transmittance. The surface of
the object S is represented by a zero-level set of SDF.

S = x ∈ R3|f(x) = 0 (3)

Moreover, NeuS introduces a probability density function ϕs(f(x)) (S-density).

ϕs(x) =
se−sx

(1 + e−sx)2
(4)

An opaque density function ρ(t) is used instead of σ(t) to obtain an unbiased
and occlusion-aware weight.

ρ(t) = max(
−dΦs

dt
(f(p(t))

Φs(f(p(t))
, 0) (5)

The final step of the volume rendering model is to do discretization. Along the
ray, The system samples n points {pi = o+ tiv|i = 1, ..., n, ti < ti+1}, computes the
approximate pixel color of the ray.

Ĉ =
n∑

i=1

Tiαici (6)

Ti, αi are discrete accumulated transmittance and discrete opacity value, which
can be denoted as the following equation:

Ti =
i−1∏
j=1

(1− αj) (7)

αi = 1− exp(−
∫ ti+1

ti

ρ(t)dt) (8)

After training, which minimizes the difference between the rendered colors and
ground truth colors, parameters of neural SDF (SΘS

) and colors (βΘβ
(x, n,−d, f))
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Figure 3: Volumetric rendering [9]

are obtained. To explain the process used in IRON visually, as shown in figure 3,
it implements volume rendering by passing the output of the neural SDF through
a flipped sigmoid light function with a notable width to obtain density value at
each location. Then it samples multiple points along each ray to perform volume
rendering. The color at each point is computed using a radiance MLP that predicts
a view-dependent color. Once this volume rendering or position is complete, it uses
these radiance MLP to initialize the diffuse albedo MLP (by recovering the second
n).

This stage is also recognized as the initialization of the second optimization
phase. Michael Oechsle et al. observed that if they do not implement volumetric
rendering and directly optimize surface rendering, the optimization requires object
segmentation masks. It will easily get stuck in local minima with incorrect topology
since existing surface rendering methods can only reason about rays that intersect
a surface [6].

2.2 Edge-aware physics-based surface rendering

The second step, optimization Edge-aware physics-based surface rendering, jointly
optimizes neural SDF, neural materials, and light intensity. The rendering involves
finding ray surface intersections and evaluating the rendering equation at each sur-
face point(figure 4), including two critical components: differentiable physics-based
shading and edge-aware surface rendering.

Figure 4: Surface rendering [9]
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During the differentiable physics-based shading phase, we could compute the
simplified rendering equation as follows because the inputs are photometric images.

Lo(wo, x) ≈ Li(wo, x)fr(wo, wo, x)(wo · n), (9)

where Lo, x, n, o, Li, fr are observed light, surface location, surface normal,
view(light) direction, incident light and BRDF. Besides, we could model the flash-
light as a point light source as below.

Li(wo;x) =
L

∥x− o∥22
, (10)

where L and o are scalar light intensity and light(camera) location. Through Eqns.
9 and 10, it’s obvious that the gradient of rendered image Lo(wo, x) must back-
propagate to the shape and material parameters through x, n and fr.

For previous research, IDR and DRV fail to consider the gradient of the image re-
construction loss concerning the geometrical parameters and visibility discontinuous.
The differentiable rendering module only works for interior pixels, but geometric dis-
continuities are introduced by edge pixels, where multiple depth values exist in a
single pixel [5]. IRON introduces a novel edge sampling algorithm for neural SDF
to fix this problem, including three steps:

• The first step is to detect edge points in 3D by walking on the zero-level set of
the neural SDF, and only consider the point where the ray-surface intersections
at depth discontinuity pixels for efficiency, and then project 3D edge points
into 2D for subpixel edge localization (as shown in figure 5). The walking
direction is defined as xt ← xt + ϵ · (nt − o−xt

(o−xt)Tnt
)

Figure 5: Edge point detection [9]

• After obtaining the edge points, the second step is to reparametrize edge points
so that it is differentiable with respect to the network weights of neural SDF.
For interior points, the differentiable ray-surface intersection equation is like
Eqns. 11, and for edge points, the only difference is to replace fire direction
(o− x) by surface normal n, as shown in Eqns. 12.

xΘs = x− o− x

nT (o− x)
SΘs(x) (11)
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xΘs = x− n

nTn
SΘs(x) = x− nSΘs(x) (12)

• Finally, we need to compute the shading at each edge pixel. As shown in fig-
ure 6, the edge pixel needs to be rendered by blending colors on both sides of
the edge. The blending weights are functions of the subpixel-accurate differ-
entiable edge point. Furthermore, it approximates the square pixel footprint
to simplify computation. The predicted color of the edge pixel should be like
Eqns. 13.

C = wACA + (1− wA)CB, (13)

where CA and CB denote shaded colors (here purple and blue), and wA rep-
resents weight of CA, which is proportional to the segment areas separated by
the edge. Therefore, edge pixel color C could back-propagate to the neural
SDF and materials by CA, CB and wA.

Figure 6: Edge pixel shading computing [9]

Volumetric radiance rendering and physical-based edge-aware surface rendering
reconstruct the object with a more accurate and precise result. After training, it uses
the marching cubes algorithm and UV unwrapping to transfer neural representations
into meshes and textures.

3 Experiments and results

There are four main experiments have been implemented. Two of them show the
superior performance of the IRON method compared to DRV [1] and PSDR [3]; The
other two small experiments are done to verify the efficiency of the edge sampling
algorithm and the loss function of the IRON method.

• For the first experiment, the goal is to address the critical effect of the proposed
edge sampling algorithm. The input of this experiment is a single target image
of an object with known color. As shown in figure 7, DRV failed to process this
problem since it lacks edge pixel handling; PSDR could recover silhouettes with
degraded quality because of fixed mesh topology; on the other hand, IRON
could reconstruct the object perfectly.
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Figure 7: Optimize model to fit single image [9]

• The second experiment evaluates the performance of three methods on in-
verse rendering from multi-view photometric images on co-located flashlight
synthetic Dataset, natural environment lightning synthetic Dataset, and real-
world Dataset. The dataset and performance of each method are explained in
figure 8. Moreover, part of the comparison results is shown in Figures 9 and
10.

Figure 8: Inverse rendering from photometric images [9] [1] [3]

From the view of optimization and deployment, IRON is easy for both optimiza-
tion and deployment, while PSDR is only easy to deploy and DRV is only easy to
optimize. However, IRON also has limitations, like no inter-reflections modeling, a
more involved capture process that requires a dark room and assuming opaque
objects with only diffuse and specular reflections, lacking in modeling translu-
cent/transparent effects.
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Figure 9: Comparison of recovered geometry on synthetic (left) and real data (right)
with DRV and PSDR [9]

Figure 10: Qualitative comparison of generalization to novel co-located flashlight
relighting using both synthetic (top row) and real (bottom row) data with NeuS,
DRV and PSDR [9]

4 Discussion / Conclusion

From the descriptions and experiments, we could know that IRON can recover more
accurate geometry and sharper texture details and can be easily re-lit under envi-
ronmental lighting using an existing graphic renderer. Besides, it is also less prone
to shape optimization artifacts. However, NeRF [4] and IDR [8] could hardly reach
this performance since NeRF has insufficient surface constraints, and IDR requires
foreground masks as supervision. Besides, IDR is easily trapped in local minima and
struggles with the reconstruction of objects with severe self-occlusion or thin struc-
tures. Compared to NeuS [7], IRON introduces a novel edge sampling algorithm,
which works better for refining the surface.

Neural fields benefit optimization, and Mesh and texture representation leads to
easier deployment. Moreover, for neural fields, it is better to optimize in a hybrid
way, where volumetric radiance rendering is for global optimization, and edge-aware
surface rendering is for local optimization. It not only works to the advantage of
better reconstruction performance but also makes full use of the features of neural
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representation and is computationally effective.
It would be efficient if IRON could work not only for photometric images and also

for the situation when the capture process is implemented in a natural environment
because it is hard to create such an environment for every object.
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