ПΠ

Seminar: Recent Advances in 3D Computer Vision

Speaker: Lukas Schneidt Supervisor: Björn Häfner Technische Universität München Computer Science – Computer Vision Group München, 11.10.2022

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Thomas Müller, NVIDIA, Switzerland, Alex Evans, NVIDIA, United Kingdom, Christoph Schied, NVIDIA, USA, Alexander Keller, NVIDIA, Germany

SIGGRAPH 2022 - Best paper award

ТUП

Content

- Introduction
- Background and Related Work
- Multiresolution Hash Encoding
- Experiments
- Discussion and Future Work
- Summary

ЛШ

Introduction

Gigapixel Image

ТШП

Introduction

Gigapixel Image

Neural signed distance functions (SDF)

ТUП

Introduction

Gigapixel Image

Neural signed distance functions (SDF)

Neural radiance caching (NRC)

ТШ

Introduction

Gigapixel Image

Neural signed distance functions (SDF)

Neural radiance caching (NRC)

Neural radiance and density fields (NeRF)

Background and Related Work

Parametric encodings

Arrange additional trainable parameters in an auxiliary data structure, such as a grid or a tree Look-up and interpolate parameters

Trade-off between larger memory footprint and smaller computational cost

Background and Related Work

Parametric encodings

Arrange additional trainable parameters in an auxiliary data structure, such as a grid or a tree Look-up and interpolate parameters

Trade-off between larger memory footprint and smaller computational cost

Sparse parametric encodings

1:26 / PSNR 23.62

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

1:47 / PSNR 24.58

(1) Hashing of voxel vertices

(1) Hashing of voxel vertices

(1) Hashing of voxel vertices

- 1. Scale Input x 1. $b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$ 2. $N_L \coloneqq \lfloor N_{min} \ast b^l \rfloor$ 3. $x \ast N_l$
- 2. Round down and up 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$

(1) Hashing of voxel vertices

- 1. Scale Input x 1. $b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$ 2. $N_L \coloneqq \left[N_{min} * b^l\right]$ 3. $x * N_l$
- 2. Round down and up 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$
- 3. Span voxel

- 1. Scale Input x 1. $b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$ 2. $N_L \coloneqq \lfloor N_{min} * b^l \rfloor$ 3. $x * N_l$
- 2. Round down and up 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$
 - B. Span voxel
- 4. Map corners to entries in respective feature vector and interpolate

(1) Hashing of voxel vertices

(2) Lookup (3) Linear Interpolation

1. Scale Input x 1. $b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$ 2. $N_L \coloneqq \lfloor N_{min} * b^l \rfloor$ 3. $x * N_l$

- 2. Round down and up 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$
- 3. Span voxel
- Map corners to entries in respective feature vector and interpolate
- 5. Repeat for all resolutions

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

1. Scale Input x 1. $b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$ 2. $N_L \coloneqq \left[N_{min} * b^l\right]$ 3. $x * N_l$

- 2. Round down and up 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$
- 3. Span voxel
- Map corners to entries in respective feature vector and interpolate
- 5. Repeat for all resolutions

(1) Hashing of voxel vertices

(2) Lookup (3) Linear Interpolation

(2) Lookup (3) Linear Interpolation

1. Scale Input x 2. $N_L \coloneqq [N_{min} * b^l]$ 3. $x * N_l$

- 1. $[x_l] = [x * N_l]$ 2. $[x_l] = [x * N_l]$
- Map corners to entries in 4. respective feature vector and interpolate
- 5. Repeat for all resolutions

(1) Hashing of voxel vertices

(1) Hashing of voxel vertices

Multiresolution Hash Encoding Implicit Hash Collision Resolution

Finer resolution levels:

- + Capture small features
- Many collisions

Multiresolution Hash Encoding Implicit Hash Collision Resolution

Finer resolution levels:

- + Capture small features
- Many collisions

Coarser resolution levels:

- + No Collisions
- Only represent low-resolution scene

Multiresolution Hash Encoding Implicit Hash Collision Resolution

Finer resolution levels:

- + Capture small features
- Many collisions

Coarser resolution levels:

- + No Collisions
- Only represent low-resolution scene

Collision \rightarrow average gradients:

Point on surface of radiance field contributes strongly Point in empty space contributes weakly

(1) Hashing of voxel vertices

(2) Lookup (3) Linear Interpolation (4) Concatenation (5) Neural Network

Multiresolution Hash Encoding Performance vs. Quality

Hash Table Size: T

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Multiresolution Hash Encoding Performance vs. Quality

Number of Levels *L* Number of feature dimensions *F*

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Multiresolution Hash Encoding Online Adaptivity and d-Linear Interpolation

Online Adaptivity:

If distribution of inputs changes during training, finer grid levels will experience fewer collisions \rightarrow more accurate function can be learned

Multiresolution Hash Encoding Online Adaptivity and d-Linear Interpolation

Online Adaptivity:

If distribution of inputs changes during training, finer grid levels will experience fewer collisions \rightarrow more accurate function can be learned

d-linear Interpolation:

Interpolation ensures that encoding and its composition with the neural network are continuous.

Experiments Gigapixel Image Approximation

Experiments Gigapixel Image Approximation

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Experiments Signed Distance Functions

Experiments Signed Distance Functions

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Comparison with high-quality offline NeRF

	Міс	Ficus	Chair	Нотрос	MATERIALS	Drums	Ship	Lego	avg.
Ours: Hash (1 s)	26.09	21.30	21.55	21.63	22.07	17.76	20.38	18.83	21.202
Ours: Hash (5 s)	32.60	30.35	30.77	33.42	26.60	23.84	26.38	30.13	29.261
Ours: Hash (15 s)	34.76	32.26	32.95	35.56	28.25	25.23	28.56	33.68	31.407
Ours: Hash (1 min)	35.92 ●	33.05 ●	34.34 •	36.78	29.33	25.82	30.20 ●	35.63 🔵	32.635 ●
Ours: Hash (5 min)	36.22 •	33.51 😐	35.00	37.40	29.78 ●	26.02 😐	31.10 😐	36.39 😐	33.176 😐
mip-NeRF (~hours)	36.51 😐	33.29	35.14 😐	37.48 😐	30.71	25.48 •	30.41	35.70	33.090
NSVF (~hours)	34.27	31.23	33.19	37.14 •	32.68 😐	25.18	27.93	32.29	31.739
NeRF (~hours)	32.91	30.13	33.00	36.18	29.62	25.01	28.65	32.54	31.005
Ours: Frequency (5 min)	31.89	28.74	31.02	34.86	28.93	24.18	28.06	32.77	30.056
Ours: Frequency (1 min)	26.62	24.72	28.51	32.61	26.36	21.33	24.32	28.88	26.669

Discussion and Future Work

Concatenation vs. Reduction

Concatenation allows for independent, fully parallel processing of each resolution Reduction of dimensionality of encoded result may be too small to encode useful information

Reduction may be favorable when neural network is significantly more expensive than encoding

Discussion and Future Work

Microstructure due to hash collisions

Hash encoding

NGLOD

ТШП

Summary

• Automatically focuses on relevant detail

ТШТ

- Automatically focuses on relevant detail
- Independent of task

ТЛП

- Automatically focuses on relevant detail
- Independent of task
- Overhead allows online training and inference

ТЛП

- Automatically focuses on relevant detail
- Independent of task
- Overhead allows online training and inference
- Speeding up NeRF by several orders of magnitude

- Automatically focuses on relevant detail
- Independent of task
- Overhead allows online training and inference
- Speeding up NeRF by several orders of magnitude
- Matches performance of concurrent non-neural 3D reconstruction techniques

- Automatically focuses on relevant detail
- Independent of task
- Overhead allows online training and inference
- Speeding up NeRF by several orders of magnitude
- Matches performance of concurrent non-neural 3D reconstruction techniques
- Single-GPU training times are within reach for many graphics applications

Q&A

Any Questions?

Thank you!

ТШ

Introduction

Adaptivity

- Coarse Resolution 1:1 mapping
- Fine Resolution Hash Table
- No structural Updates to data structure

Introduction

Adaptivity

- Coarse Resolution 1:1 mapping
- Fine Resolution Hash Table
- No structural Updates to data structure

Efficiency

- Hash Tabel lookups are O(1)
- Avoiding execution divergence and serial pointer-chasing
- Resolutions may be queried in parallel

Introduction

Adaptivity

- Coarse Resolution 1:1 mapping
- Fine Resolution Hash Table
- No structural Updates to data structure

Efficiency

- Hash Tabel lookups are O(1)
- Avoiding execution divergence and serial pointer-chasing
- Resolutions may be queried in parallel

Independent from Task

1. Scale Input x

1.
$$b \coloneqq \exp(\frac{\ln N_{max} - \ln N_{min}}{L-1})$$

2. $N_L \coloneqq \left[N_{min} * b^l\right]$
3. $x * N_l$

- 2. Round down and up
 - 1. $[x_l] = [x * N_l]$
 - 2. $[x_l] = [x * N_l]$
- 3. Span voxel with 2^d integer vertices
- 4. Map each corner to an entry in respective feature vector array
- 5. Spatial Hash Function
 - 1. $h(x) = \begin{pmatrix} d \\ i=1 \end{pmatrix} \oplus x_i \pi_i \mod T$

Number of trainable encoding parameters θ bounded by L*T*F

- L resolution levels
- T feature vectors per level
- F dimensional feature vectors

Model Architecture:

Density MLP: hash encoded position mapped to 16 output values Color MLP: adds view-dependent color variation

Accelerated ray marching:

Maintain occupancy grid that coarsely marks empty vs. non-empty space Additionally cascade it and distribute samples exponentially

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Comparison with direct voxel lookups

ТЛП

NeRF Model Architecture

Discussion and Future Work

Choice of hash function

- PCG32 RNG, with superior statistical properties
- Order LSBs of \mathbb{Z}^d by space-filling curve and only hashing higher bits
- Treat hash function as tiling of space into dense grids

Discussion and Future Work

Microstructure due to hash collisions

Other applications

Heterogenous volumetric density fields

Implementation

Performance Considerations

Hash tables evaluated level by level to optimally use GPU's caches Performance on tested hardware constant for T<= 2^{19}

Architecture

MLP with two hidden layers with a width of 64 neurons, ReLU activation and linear output layer

 N_{max} is set to:

- 2048 x scene size for NeRF and SDF
- Half of gigapixel image width
- 2¹⁹ for radiance caching

Implementation

Initialization

Weights are initialized according to Glorot and Bengio to provide reasonable scaling of activations and their gradients

Hash table entries initialized using $\mathcal{U}(-10^{-4}, 10^{-4})$ to provide randomnes

Training

Trained by applying Adam with $\beta_1 = 0.9$, $\beta_2 = 0.99$, $\epsilon = 10^{-15}$ Weak L2 regularization to prevent divergence

Gigapixel and NeRF: L₂ Loss SDF: MAPE NRC: luminance-relative L₂ Loss

```
Learning rate of 10<sup>-4</sup> for SDF and 10<sup>-2</sup> otherwise
```

Implementation

Non-spatial input dimensions

Auxiliary dimensions such as view direction and material parameters (light field) One-blob encoding [Müller et al. 2019] is used in radiance caching Spherical Harminocs basis in NeRF