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Background and Related Work

Parametric encodings
Arrange additional trainable parameters in an auxiliary data structure, such as a grid or a tree

Look-up and interpolate parameters
Trade-off between larger memory footprint and smaller computational cost
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Background and Related Work

Parametric encodings

Arrange additional trainable parameters in an auxiliary data structure, such as a grid or a tree
Look-up and interpolate parameters

Trade-off between larger memory footprint and smaller computational cost

Sparse parametric encodings
(b) Frequency (c) Dense grid (d) Dense grid (e) Hash table (ours) (f) Hash table (ours)
[Mildenhall et al. 2020] Multi resolution T= 214 7 ‘ T =21
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411k + 0 parameters 438k + 0 10k + 33.6 M 10k + 16.3M 10k + 494k 10k + 12.6 M
11:28 (mm:ss) / PSNR 18.56 12:45 / PSNR 22.90 1:09 / PSNR 22.35 1:26 / PSNR 23.62 1:48 / PSNR 22.61 1:47 / PSNR 24.58
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Multiresolution Hash Encoding

(1) Hashing of voxel vertices
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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(1) Hashing of voxel vertices
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
Implicit Hash Collision Resolution

Finer resolution levels:
+ Capture small features
- Many collisions

Y
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Multiresolution Hash Encoding
Implicit Hash Collision Resolution

L=2 1/No
Finer resolution levels: ]
+ Capture small features
- Many collisions ., e\
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Multiresolution Hash Encoding
Implicit Hash Collision Resolution

L=2 1/No F
Finer resolution levels: N 7o =
+ Capture small features 1
- Many collisions 9., 0N 2
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- Only represent low-resolution scene | ) )
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Collision - average gradients:
Point on surface of radiance field contributes strongly
Point in empty space contributes weakly
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Multiresolution Hash Encoding
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Multiresolution Hash Encoding
Performance vs. Quality

Hash Table Size: T
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PSNR (d

Multiresolution Hash Encoding
Performance vs. Quality

Number of Levels L
Number of feature dimensions F
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Multiresolution Hash Encoding
Online Adaptivity and d-Linear Interpolation

Online Adaptivity:
If distribution of inputs changes during training, finer grid levels will experience fewer collisions
—> more accurate function can be learned
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Multiresolution Hash Encoding
Online Adaptivity and d-Linear Interpolation
Online Adaptivity:

If distribution of inputs changes during training, finer grid levels will experience fewer collisions
— more accurate function can be learned

d-linear Interpolation:
Interpolation ensures that encoding and its composition with the neural network are

continuous.
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Experiments
Gigapixel Image Approximation

Elapsed training time: O seconds
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Experiments
Gigapixel Image Approximation

Hash table size: T = 222  T= 2

Reference
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Experiments
Signed Distance Functions

NGLOD Hash (ours)  Frequency Frequency  Hash (ours) NGLOD Hash (ours)

7l |
22.3 M (params)
1:56 (mm:ss)
0.9777 (loU)

11.1 M (params) 12.2M 124.9k 124.9 k » 127.2 M 247.2 M

1:37 (mm:ss) 1:19 1:35 1:21 1:04 1:50
0.9911 (loU) 0.9872 0.8470 0.7575 0.9691 0.9749
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Experiments
Signed Distance Functions
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Experiments
Neural Radiance Caching

Feature buffers
Predicted color

m(enc(x; 6); D)
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Experiments
Neural Radiance Caching

Triangle wave encoding [Miiller et al. 2021], 147 FPS Multiresolution hash encoding (Ours), T = 15, 133 FPS

Far view Medium view Far view Medium view ~ Close-by view
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Experiments
Neural Radiance Caching

Elapsed training time: 0 seconds
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Experiments
Neural Radiance and Density Fields (NeRF)
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Experiments
Neural Radiance and Density Fields (NeRF)
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Experiments
Neural Radiance and Density Fields (NeRF)

Comparison with high-quality offline NeRF

Mic Ficus CHAIR HoTtpoc MATERIALS DRrums SHIP Leco avg.
Ours: Hash (1) 26.09 21.30 21.55 21.63 22.07 17.76 20.38 18.83 21.202
Ours: Hash (55s) 32.60 30.35 30.77 33.42 26.60 23.84 26.38 30.13 29.261
Ours: Hash (155) 34.76 32.26 32.95 35.56 28.25 25.23 28.56 33.68 31.407
Ours: Hash (1 min) 35.92 @ 33.05@ 34340 36.78 29.33 25.82 30.20 @ 35.63 @ 32.635 @
Ours: Hash (5 min) 36.22 33.51 35.00 37.40 29.78 @ 26.02 31.10 36.39 33.176
mip-NeRF (~hours) 36.51 33.29 35.14 37.48 30.71 25.48 @ 30.41 35.70 33.090
NSVF (~hours) 34.27 31.23 33.19 37.14@ 32.68 25.18 27.93 32.29 31.739
NeRF (~hours) 32.91 30.13 33.00 36.18 29.62 25.01 28.65 32.54 31.005
Ours: Frequency (5 min) 31.89 28.74 31.02 34.86 28.93 24.18 28.06 32.77 30.056
Ours: Frequency (1 min) 26.62 24.72 28.51 32.61 26.36 21.33 24.32 28.88 26.669
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Experiments
Neural Radiance and Density Fields (NeRF)

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

38



Discussion and Future Work

Concatenation vs. Reduction
Concatenation allows for independent, fully parallel processing of each resolution
Reduction of dimensionality of encoded result may be too small to encode useful information

Reduction may be favorable when neural network is significantly more expensive than
encoding

T__
g

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding 39



Discussion and Future Work

Microstructure due to hash collisions

Hash encoding
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Summary

» Automatically focuses on relevant detail
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Summary

Automatically focuses on relevant detail

* Independent of task

» Overhead allows online training and inference
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Summary

Automatically focuses on relevant detail

* Independent of task

» Overhead allows online training and inference

» Speeding up NeRF by several orders of magnitude

» Matches performance of concurrent non-neural 3D reconstruction techniques

« Single-GPU training times are within reach for many graphics applications

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

46



Q&A

Any Questions?
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Thank you!
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Introduction

Adaptivity
» Coarse Resolution — 1:1 mapping
» Fine Resolution - Hash Table
» No structural Updates to data structure
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Introduction

Adaptivity
» Coarse Resolution — 1:1 mapping
» Fine Resolution - Hash Table
» No structural Updates to data structure

Efficiency
» Hash Tabel lookups are O(1)
* Avoiding execution divergence and serial pointer-chasing
* Resolutions may be queried in parallel
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Introduction

Adaptivity
» Coarse Resolution — 1:1 mapping
» Fine Resolution - Hash Table
» No structural Updates to data structure

Efficiency
» Hash Tabel lookups are O(1)
* Avoiding execution divergence and serial pointer-chasing
* Resolutions may be queried in parallel

Independent from Task
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Multiresolution Hash Encoding

1. Scale Input x

In Ningx —In Nmin
1. b =exp( = )
2. N, = lein * le
3. X * Nl

2. Round down and up
1 x| = lx = N
2. [x]1= [x = N
3. Span voxel with 29 integer vertices

4. Map each corner to an entry in respective feature vector array

5. Spatial Hash Function
1. h(x) = (izcllEB x;m; mod T)
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Multiresolution Hash Encoding

Number of trainable encoding parameters 6 bounded by L*T*F
* L resolution levels

« T feature vectors per level

» F dimensional feature vectors

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
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Experiments
Neural Radiance Caching

Feature buffers
Predicted color

Online
‘Wie supervised

m(enc(x; 6); @) R training
Pend i ,
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Real-time sparse path tracer
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Experiments
Neural Radiance and Density Fields (NeRF)

Model Architecture:
Density MLP: hash encoded position mapped to 16 output values
Color MLP: adds view-dependent color variation

Accelerated ray marching:
Maintain occupancy grid that coarsely marks empty vs. non-empty space
Additionally cascade it and distribute samples exponentially
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Experiments
Neural Radiance and Density Fields (NeRF)

Comparison with direct voxel lookups

Ours (MLP) Linear MLP Reference
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NeRF Model Architecture

Neural Radiance Field: LEGO

36.5 —
oy N, =128 Nheurons = 256
[ae) neurons
3 36 Nheurons = 64
o
Z Nheurons = 32
4 Na ers = 1
Q- 35.5 — lay
Mayers =2
Nheurons = 16 lvlayers =3
| | | | | |
200 300 400 500 600 700

Training time (seconds)
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Discussion and Future Work

Choice of hash function

« PCG32 RNG, with superior statistical properties

 Order LSBs of Z¢ by space-filling curve and only hashing higher bits
» Treat hash function as tiling of space into dense grids
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Discussion and Future Work

Microstructure due to hash collisions

60 seconds reference

Other applications
Heterogenous volumetric density fields
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Implementation

Performance Considerations
Hash tables evaluated level by level to optimally use GPU‘s caches
Performance on tested hardware constant for T<= 21°

Architecture

MLP with two hidden layers with a width of 64 neurons, ReLU activation and linear output
layer

Nax IS Set to:

» 2048 x scene size for NeRF and SDF

« Half of gigapixel image width

« 29 for radiance caching
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Implementation

Initialization

Weights are initialized according to Glorot and Bengio to provide reasonable scaling of
activations and their gradients

Hash table entries initialized using U(—10"%,10™%) to provide randomnes

Training
Trained by applying Adam with 8,=0.9, ,=0.99, € = 1015
Weak L2 regularization to prevent divergence

Gigapixel and NeRF: L, Loss
SDF: MAPE

NRC: luminance-relative L, Loss

Learning rate of 10 for SDF and 10-? otherwise
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Implementation

Non-spatial input dimensions

Auxiliary dimensions such as view direction and material parameters (light field)
One-blob encoding [Muller et al. 2019] is used in radiance caching

Spherical Harminocs basis in NeRF

Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

62



