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Parametric encodings
Arrange additional trainable parameters in an auxiliary data structure, such as a grid or a tree
Look-up and interpolate parameters
Trade-off between larger memory footprint and smaller computational cost

Sparse parametric encodings
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Finer resolution levels:
+ Capture small features
- Many collisions

Finer resolution levels:
+ Capture small features
- Many collisions

Collision à average gradients:
Point on surface of radiance field contributes strongly
Point in empty space contributes weakly
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Hash Table Size: T
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Number of Levels L
Number of feature dimensions F
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Online Adaptivity:
If distribution of inputs changes during training, finer grid levels will experience fewer collisions
à more accurate function can be learned

d-linear Interpolation:
Interpolation ensures that encoding and ist composition with the neural network are
continuous.
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Comparison with high-quality offline NeRF
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Concatenation vs. Reduction
Concatenation allows for independent, fully parallel processing of each resolution
Reduction of dimensionality of encoded result may be too small to encode useful information

Reduction may be favorable when neural network is significantly more expensive than
encoding

Choice of hash function
• PCG32 RNG, with superior statistical properties
• Order LSBs of ℤ1 by space-filling curve and only hashing higher bits
• Treat hash function as tiling of space into dense grids
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Microstructure due to hash collisions

Hash encoding NGLOD
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• Automatically focuses on relevant detail

• Independent of task

• Overhead allows online training and inference

• Speeding up NeRF by several orders of magnitude

• Matches performance of concurrent non-neural 3D reconstruction techniques

• Single-GPU training times are within reach for many graphics applications
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Any Questions?
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Thank you!



Adaptivity
• Coarse Resolution – 1:1 mapping
• Fine Resolution - Hash Table
• No structural Updates to data structure

Efficiency
• Hash Tabel lookups are O(1)
• Avoiding execution divergence and serial pointer-chasing
• Resolutions may be queried in parallel

Independent from Task
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1. Scale Input x

1. 𝑏 ≔ exp(23 4!"# 5 23 4!$%6 57 )
2. 𝑁6 ≔ ,𝑁89: ∗ .𝑏;

3. 𝑥 ∗ 𝑁;

2. Round down and up
1. 𝑥; = 𝑥 ∗ 𝑁;
2. 𝑥; = 𝑥 ∗ 𝑁;

3. Span voxel with 2d integer vertices

4. Map each corner to an entry in respective feature vector array

5. Spatial Hash Function
1. ℎ 𝑥 = (9<7

1⨁𝑥9𝜋9 𝑚𝑜𝑑 𝑇)
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Number of trainable encoding parameters 𝜃 bounded by L*T*F
• L resolution levels
• T feature vectors per level
• F dimensional feature vectors

53Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Multiresolution Hash Encoding



54Lukas Schneidt | Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Experiments
Neural Radiance Caching



Model Architecture:
Density MLP: hash encoded position mapped to 16 output values
Color MLP: adds view-dependent color variation

Accelerated ray marching:
Maintain occupancy grid that coarsely marks empty vs. non-empty space
Additionally cascade it and distribute samples exponentially
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Comparison with direct voxel lookups
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Choice of hash function
• PCG32 RNG, with superior statistical properties
• Order LSBs of ℤ1 by space-filling curve and only hashing higher bits
• Treat hash function as tiling of space into dense grids
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Microstructure due to hash collisions

60 seconds reference

Other applications
Heterogenous volumetric density fields
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Performance Considerations
Hash tables evaluated level by level to optimally use GPU‘s caches
Performance on tested hardware constant for T<= 219

Architecture
MLP with two hidden layers with a width of 64 neurons, ReLU activation and linear output
layer
Nmax is set to:
• 2048 x scene size for NeRF and SDF
• Half of gigapixel image width
• 219 for radiance caching
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Initialization
Weights are initialized according to Glorot and Bengio to provide reasonable scaling of
activations and their gradients
Hash table entries initialized using 𝒰 −105=, 105= to provide randomnes

Training
Trained by applying Adam with 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10-15

Weak L2 regularization to prevent divergence

Gigapixel and NeRF: L2 Loss
SDF: MAPE
NRC: luminance-relative L2 Loss

Learning rate of 10-4 for SDF and 10-2 otherwise
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Non-spatial input dimensions
Auxiliary dimensions such as view direction and material parameters (light field)
One-blob encoding [Müller et al. 2019] is used in radiance caching
Spherical Harminocs basis in NeRF
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