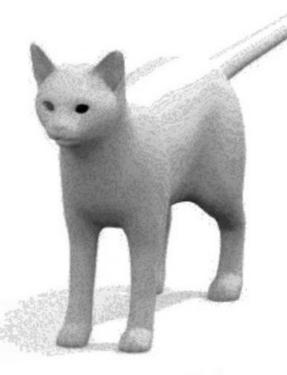
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

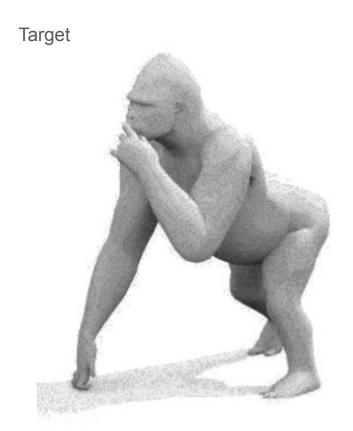
Marvin Eisenberger*,†, David Novotny*, Gael Kerchenbaum*, Patrick Labatut*, Natalia Neverova*, Daniel Cremers†, Andrea Vedaldi* Facebook Al Research*, Technical University of Munich†

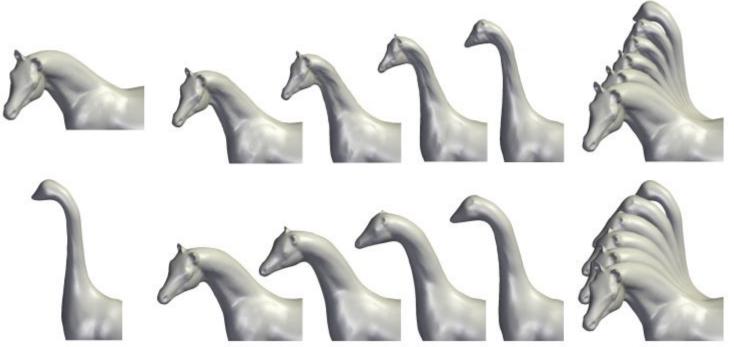
Seminar presentation by Askar Kolushev

Problem description

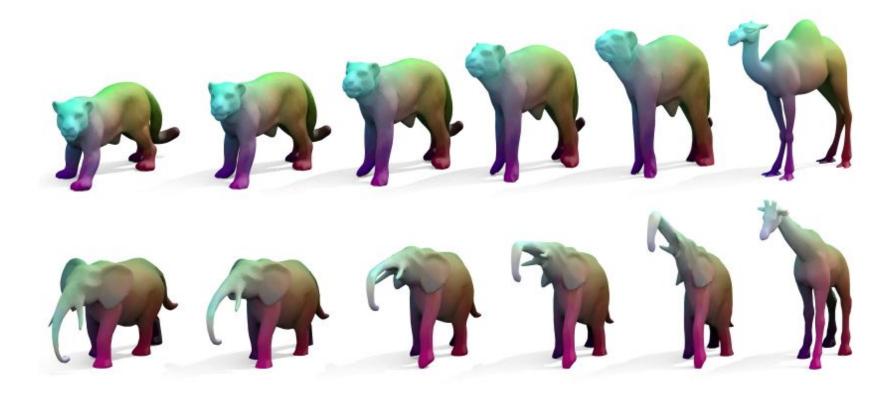
Source







Xu, D., Zhang, H., Wang, Q., & Bao, H. (2005). Poisson shape interpolation. Graph. Model., 68, 268-281.



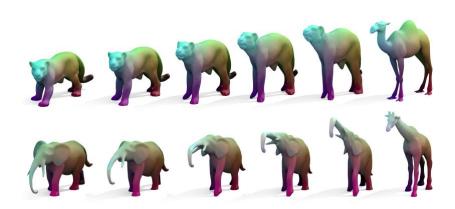
Geometric characterisation:

- Represent with low-dimensional manifolds;
- Interpolate shapes directly.

In both cases, find geodesic paths between the corresponding points - paths with minimum number of edges.

Statistical characterization (generative models):

- Occupancy probabilities on 3D voxel grid;
- Decode point clouds or 3D meshes;
- Implicit representation with a neural network.



Geometrical characterization of 3D shapes

Low-dimensional manifold in a high-dimensional space

Fyffe, Graham. (2019). Closed Form Variances for Variational Auto-Encoders.

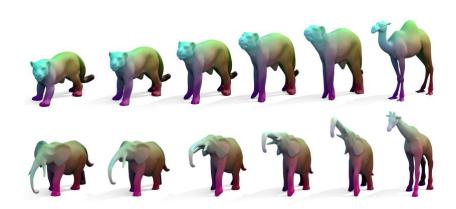
Geometric characterisation:

- Represent with low-dimensional manifolds;
- Interpolate shapes directly.

In both cases, find geodesic paths between the corresponding points - paths with minimum number of edges.

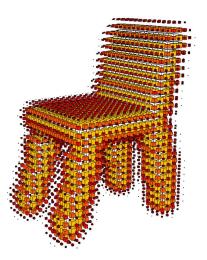
Statistical characterization (generative models):

- Occupancy probabilities on 3D voxel grid;
- Decode point clouds or 3D meshes;
- Implicit representation with a neural network.



3D shape representation

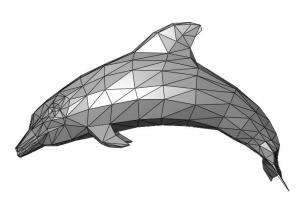
3D voxel grid



Kakillioglu, Burak & Ren, Ao & Wang, Yanzhi & Velipasalar, Senem. (2020). 3D Capsule Networks for Object Classification With Weight Pruning. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.2971950.

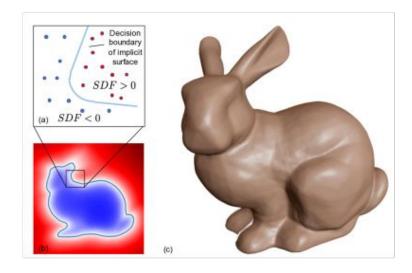
Point cloud

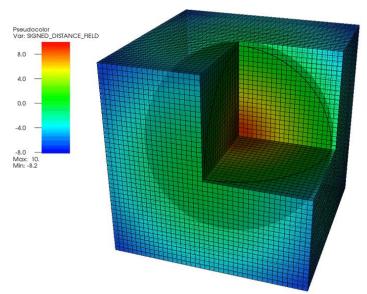
3D mesh



www.open3d.org

Implicit representation

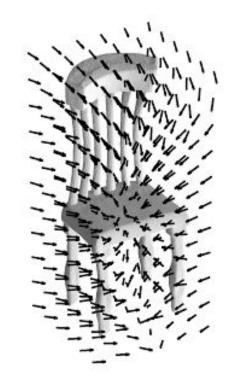




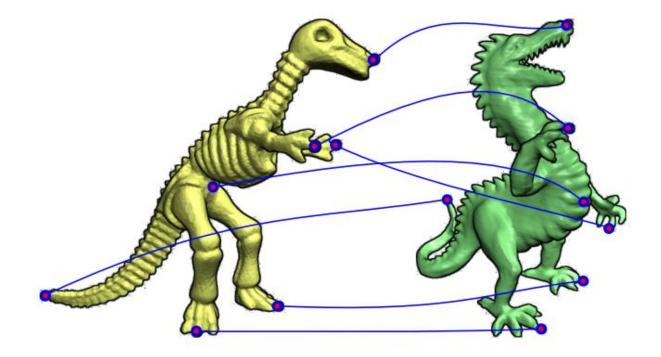
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove: "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation", 2019 Shriwise, Patrick & Davis, Andrew & Jacobson, Lucas & Wilson, Paul. (2017). Particle Tracking Acceleration via Signed Distance Fields in DAGMC. Nuclear Engineering and Technology.

Signed distance field vs Velocity field

84.8	54.6	24.4	5.8	-17.0	8.2	33.4	58.2	69.2	80.3	91.7	116.5
49.3	14.8	-15.4	-45.7	-60.2	-35.0	-9.8	9.4	20.5	31.6	46.2	85.5
39.2	-10.3	-55.3	-85.5	-103.4	-78.2	-53.0	-39.4	-28.3	-17.2	21.3	68.6
32.3	-17.2	-66.7	-116.3	-146.6	-121.4	-99.3	-88.1	-77.0	-42.3	5.0	52.3
25.4	-24.1	-73.7	-104.2	-132.7	-161.8	-148.0	-136.9	-105.8	-58.6	-11.3	36.0
24.3	6.1	-34.6	-63.1	-91.7	-127.3	-170.1	-169.4	-120.5	-71.2	-22.0	27.2
63.5	35.0	6.4	-22.1	-58.4	-102.0	-133.5	-129.2	-111.8	-62.6	-13.3	35.9
104.6	76.0	47.5	9.7	-33.9	-77.5	-83.6	-80.1	-70.2	-53.9	-4.7	44.6
145.6	117.1	77.8	34.2	9.4	-31.1	-33.6	-31.1	-21.2	-11.3	4.0	53.2
186.7	145.9	102.3	58.7	21.9	18.9	16.3	17.9	27.8	37.7	47.6	72.4
214.0	170.4	127.3	90.2	71.4	68.8	66.2	66.9	76.8	86.7	96.6	111.9

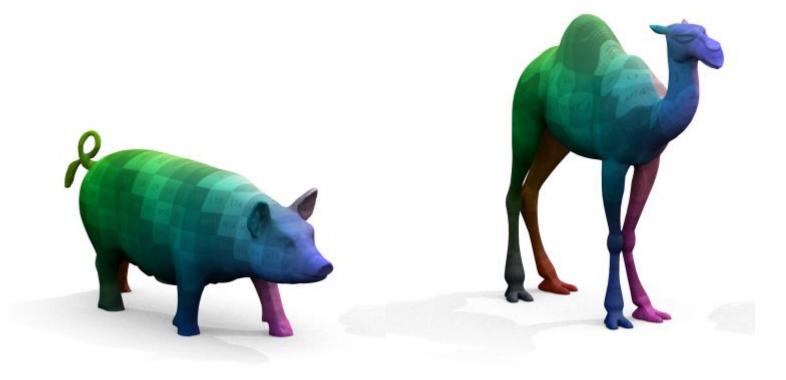


Point correspondence

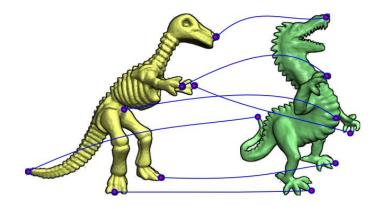


Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. A survey on shape correspondence. *Computer Graphics Forum*, 30(6):1681–1707, 2011.

Point correspondence



Point correspondence

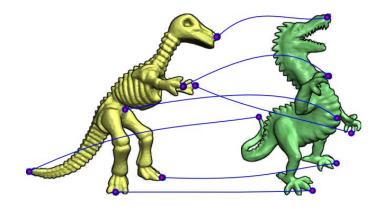


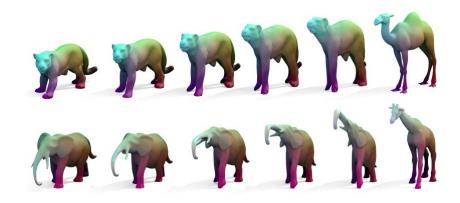
- Axiomatic
- Machine learning-based
- Manual

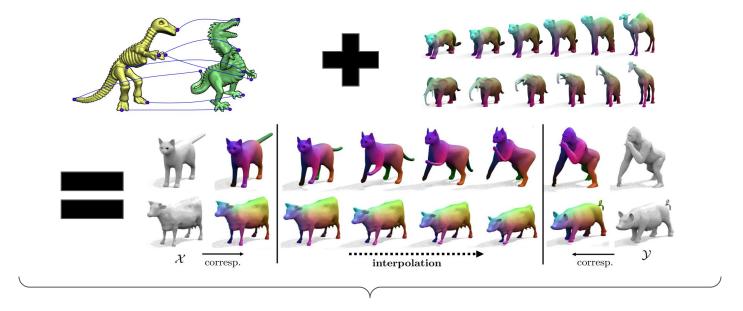
Limitations of previous works

- Point correspondence is solved separately
- Othen done manually
- => time-consuming data preparation
- => not enough training data
- => no inter-class interpolation

NeuroMorph







Single feed-forward pass and unsupervised

Shape interpolation

Use geometric representation:

- Represent with low-dimensional manifolds;
- Interpolate shapes directly.

In both cases, find geodesic paths between the corresponding points - paths with minimum number of edges.

Statistical characterization (generative models):

- Occupancy probabilities on 3D voxel grid;
- Decode point clouds or <u>3D meshes;</u>
- Implicit representation with a neural network.

Point correspondence

- Manual
- Axiomatic
- Machine learning-based

Goal

$$egin{aligned} &\mathcal{X}-source\ &\mathcal{Y}-target \end{aligned} \ f:(\mathcal{X},\mathcal{Y})\longmapsto(\Pi,\Delta) \end{aligned}$$

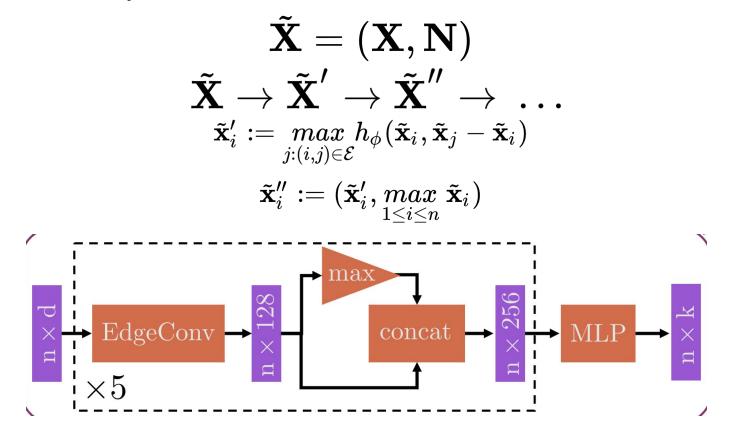
 $\Pi-correspondence\ matrix \ \Delta(t)-interpolation\ flow$

Goal

 $\Pi \in [0,1]^{n imes m}$ $\Pi_{i,j} = \mathbb{P}(p_i \leftrightarrow p_j)$

 $\Delta(t)\in \mathbb{R}^{n imes 3}, t\in [0,1]$ $\mathbf{X}(t) = \mathbf{X} + \Delta(t)$

 $\mathbf{X}(0) = \mathbf{X}$ $\mathbf{X}(1) = \Pi \mathbf{Y}$ **Point Correspondence - Feature Extraction**

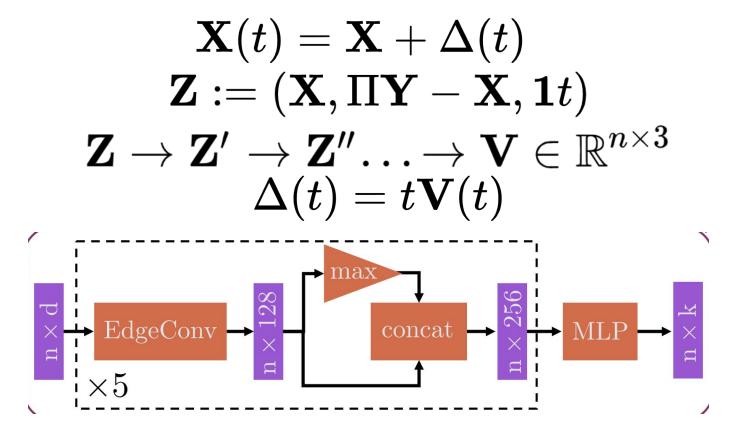


Point Correspondence - Pairwise Feature Comparison $\Pi \in [0,1]^{n imes m}$ $\Pi_{i,j} = \mathbb{P}(p_i \leftrightarrow p_j)$

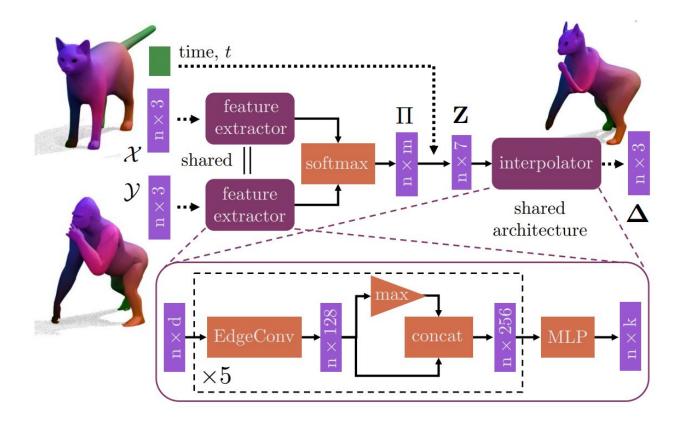
$$egin{aligned} ilde{\mathbf{X}} &= \Phi(\mathcal{X}) \in \mathbb{R}^{n imes d} \ ilde{\mathbf{Y}} &= \Phi(\mathcal{Y}) \in \mathbb{R}^{n imes d} \end{aligned}$$

$$\Pi_{ij} := rac{exp(\sigma s_{ij})}{\sum_{k=1}^m exp(\sigma s_{ik})} \;\; s_{ij} := rac{\langle ilde{\mathbf{x}}_i, ilde{\mathbf{y}}_j
angle}{\| ilde{\mathbf{x}}_i \|_2 \| ilde{\mathbf{y}}_j \|_2}$$

Interpolation

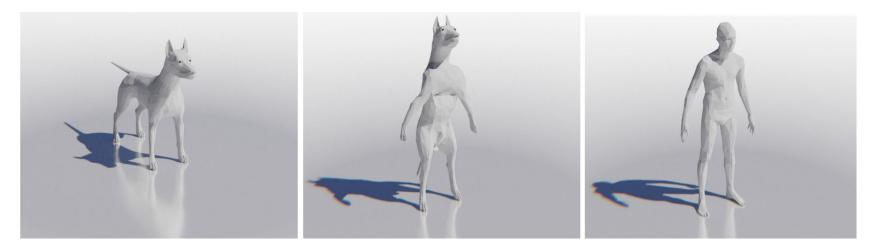


NeuroMorph - Full Architecture



Interpolation - Trivial Solution

$\mathbf{X}(0) = \mathbf{X} + 0 \cdot \mathbf{V}(0) = \mathbf{X} \ \mathbf{X}(1) = \mathbf{X} + 1 \cdot (\Pi \mathbf{Y} - \mathbf{X}) = \Pi \mathbf{Y}$



Learning

- 1. Correctly correspond and interpolate the Source to the Target
- 2. Keep intermediate models geometrically plausible

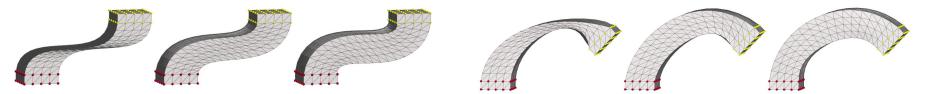
$$\ell := \lambda_{reg} \ell_{reg} + \lambda_{arap} \ell_{arap} + \lambda_{geo} \ell_{geo}$$

- 1. Registration loss
- 2. As-rigid-as-possible loss
- 3. Geodesic distance preservation loss

Learning - Registration Loss

$egin{aligned} \ell_{reg}(\mathbf{X}_T,\mathbf{T},\Pi) &:= \|\Pi\mathbf{Y}-\mathbf{X}_T\|_2^2\ \Delta(0) &= 0\ \Delta(1) &= \Pi\mathbf{Y}-\mathbf{X} \end{aligned}$

$\begin{aligned} \text{Learning - As-Rigid-As-Possible Loss} \\ E_{arap}(\mathbf{X}_k, \mathbf{X}_{k+1}) &:= \frac{1}{2} \min_{\substack{\mathbf{R}_i \in SO(3) \\ i=1,...,n}} \sum_{\substack{(i,j) \in \mathcal{E} \\ i=1,...,n}} \|\mathbf{R}_i(\mathbf{X}_{k,j} - \mathbf{X}_{k,i}) - (\mathbf{X}_{k+1,j} - \mathbf{X}_{k+1,i})\|_2^2 \\ \ell_{arap}(\mathbf{X}_0, \dots, \mathbf{X}_T) &:= \sum_{k=0}^{T-1} E_{arap}(\mathbf{X}_k, \mathbf{X}_{k+1}) + E_{arap}(\mathbf{X}_{k+1}, \mathbf{X}_k) \end{aligned}$



Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on Geometry processing (SGP '07). Eurographics Association, Goslar, DEU, 109–116.

Learning - Geodesic Distance Preservation Loss $\ell_{qeo}(\Pi) := \|\Pi \mathbf{D}_{\mathcal{Y}} \Pi^T - \mathbf{D}_{\mathcal{X}}\|_2^2$

Mykhalchuk, Vasyl & Cordier, Frederic & Seo, Hyewon. (2013). Landmark transfer with minimal graph. Computers & Graphics. 37. 539–552. 10.1016/j.cag.2013.04.005.

Gabriel Peyré, Laurent D. Cohen. Geodesic Methods for Shape and Surface Processing. Tavares, João Manuel R.S.; Jorge, R.M. Natal. Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer Verlag, pp.29-56, 2009, Computational Methods in Applied Sciences, Vol. 13, ff10.1007/978-1-4020-9086-8ff. ffhal-00365899

Experiments and Results

Experiments - Point Correspondence

Datasets:

- 1. FAUST (remeshed)
- 2. SCHREC20
- 3. G-S-H (Galgo, Sphynx, Human)

Metric:

Princeton benchmark protocol (geodesic distance normalized by square root area of the mesh).

Competitors:

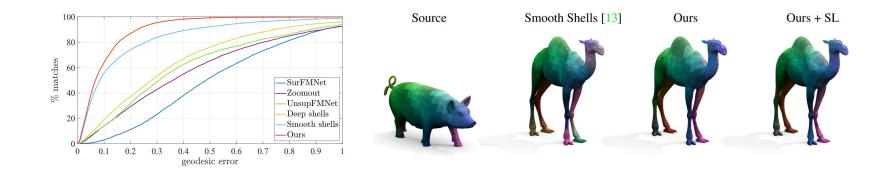
- 1. BCICP
- 2. ZoomOut
- 3. Smooth Shells
- 4. 3D-CODED
- 5. FMNet
- 6. GeoFMNet
- 7. SurFMNet
- 8. Unsupervised FMNet
- 9. Weakly supervised FMNet
- 10. Deep shells

Experiments - Point Correspondence - Results

		err	p.p.	w/o p.p.
	BCICP	6.4	-	-
Axiomatic	ZoomOut	6.1	-	-
	Smooth Shells	2.5	-	-
	3D-CODED	2.5	-	-
Supervised	FMNet	5.9	PMF	11
	GeoFMNet	1.9	ZO	3.1
	SurFMet	7.4	ICP	15
	Unzip FMNet	5.7	PMF	10
Unsupervised	Weakly sup. FMNet	1.9	ZO	3.3
	Deep shells	1.7	-	-
	NeuroMorph	1.5	SL	2.3

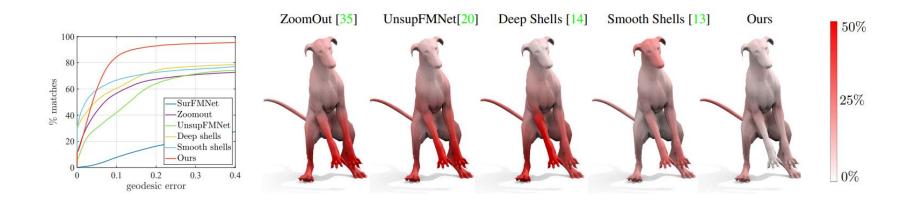
FAUST

Experiments - Point Correspondence - Results



SHREC20

Experiments - Point Correspondence - Results



Experiments - Shape Interpolation

Datasets:

1. FAUST

2. MANO

Metric:

- 1. Conformal distortion
- 2. Chamfer distance

Competitors:

- 1. ShapeFlow
- 2. LIMP
- 3. Hamiltonian interpolation

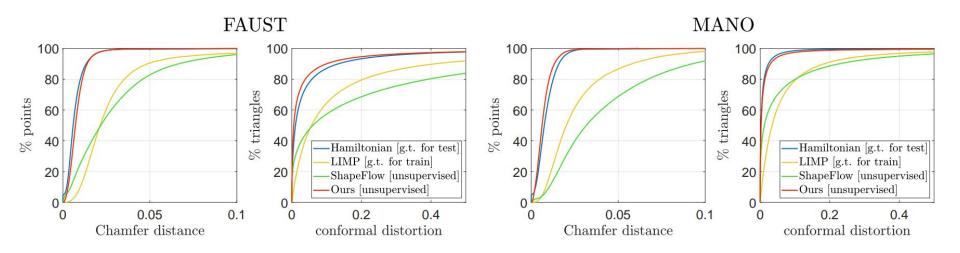
Experiments - Shape Interpolation - Metrics

$$F(\mathcal{X}) = A\mathcal{X} + b$$
 $\kappa_F(A) = rac{trace(A^TA)}{\det A}$ Conformal distortion

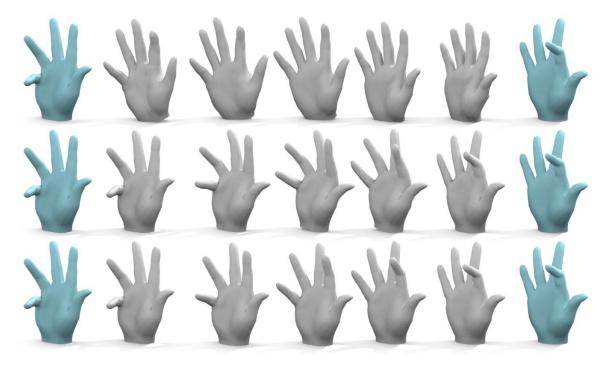
$$CD(S_1,S_2) = rac{1}{S_1} \sum_{x \in S_1} \min_{y \in S_2} \|x-y\|_2^2 + rac{1}{S_2} \sum_{y \in S_2} \min_{x \in S_1} \|y-x\|_2^2,$$

Chamfer distance

Experiments - Shape Interpolation - Results



Experiments - Shape Interpolation - Results



Hamiltonian interpolation

LIMP

NeuroMorph

Application - Data Augmentation

