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Problem description
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Relate two 3D shapes

Source Target
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Shape interpolation

Xu, D., Zhang, H., Wang, Q., & Bao, H. (2005). Poisson shape interpolation. Graph. Model., 68, 268-281.
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Shape interpolation
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Shape interpolation

Geometric characterisation:

● Represent with low-dimensional manifolds;
● Interpolate shapes directly.

In both cases, find geodesic paths between the 
corresponding points - paths with minimum number 
of edges.

Statistical characterization (generative models):

● Occupancy probabilities on 3D voxel grid;
● Decode point clouds or 3D meshes;
● Implicit representation with a neural network.
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Geometrical characterization of 3D shapes

Low-dimensional manifold in a high-dimensional space

Fyffe, Graham. (2019). Closed Form Variances for Variational Auto-Encoders.
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Shape interpolation

Geometric characterisation:

● Represent with low-dimensional manifolds;
● Interpolate shapes directly.

In both cases, find geodesic paths between the 
corresponding points - paths with minimum number 
of edges.

Statistical characterization (generative models):

● Occupancy probabilities on 3D voxel grid;
● Decode point clouds or 3D meshes;
● Implicit representation with a neural network.
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3D shape representation

3D voxel grid

Kakillioglu, Burak & Ren, Ao & Wang, Yanzhi & 
Velipasalar, Senem. (2020). 3D Capsule Networks 
for Object Classification With Weight Pruning. IEEE 
Access. PP. 1-1. 10.1109/ACCESS.2020.2971950. 

Point cloud

www.open3d.org

3D mesh
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Implicit representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard 
Newcombe, Steven Lovegrove: “DeepSDF: Learning 
Continuous Signed Distance Functions for Shape 
Representation”, 2019

Shriwise, Patrick & Davis, Andrew & Jacobson, Lucas & 
Wilson, Paul. (2017). Particle Tracking Acceleration via 
Signed Distance Fields in DAGMC. Nuclear Engineering 
and Technology. 10



Signed distance field vs Velocity field
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Point correspondence

Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. A survey on shape 
correspondence. Computer Graphics Forum, 30(6):1681–1707, 2011. 12



Point correspondence
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Point correspondence

● Axiomatic
● Machine learning-based
● Manual
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Limitations of previous works

● Point correspondence is solved separately
● Othen done manually
● => time-consuming data preparation
● => not enough training data
● => no inter-class interpolation
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NeuroMorph
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Relate two 3D shapes
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Relate two 3D shapes

Single feed-forward pass and unsupervised
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Relate two 3D shapes

Shape interpolation

Use geometric representation:

● Represent with low-dimensional manifolds;
● Interpolate shapes directly.

In both cases, find geodesic paths between the 
corresponding points - paths with minimum number 
of edges.

Statistical characterization (generative models):

● Occupancy probabilities on 3D voxel grid;
● Decode point clouds or 3D meshes;
● Implicit representation with a neural network.

Point correspondence

● Manual
● Axiomatic
● Machine learning-based
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Goal
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Goal
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Point Correspondence - Feature Extraction
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Point Correspondence - Pairwise Feature Comparison
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Interpolation
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NeuroMorph - Full Architecture
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Interpolation - Trivial Solution
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Learning
1. Correctly correspond and interpolate the Source to the Target
2. Keep intermediate models geometrically plausible

1. Registration loss
2. As-rigid-as-possible loss
3. Geodesic distance preservation loss
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Learning - Registration Loss
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Learning - As-Rigid-As-Possible Loss
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Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics 
symposium on Geometry processing (SGP '07). Eurographics Association, Goslar, DEU, 109–116.



Learning - Geodesic Distance Preservation Loss
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Mykhalchuk, Vasyl & Cordier, Frederic & Seo, Hyewon. (2013). Landmark transfer 
with minimal graph. Computers & Graphics. 37. 539–552. 
10.1016/j.cag.2013.04.005. 

Gabriel Peyré, Laurent D. Cohen. Geodesic Methods for Shape and Surface Processing. Tavares, 
João Manuel R.S.; Jorge, R.M. Natal. Advances in Computational Vision and Medical Image 
Processing: Methods and Applications, Springer Verlag, pp.29-56, 2009, Computational Methods in 
Applied Sciences, Vol. 13, ff10.1007/978-1-4020-9086-8ff. ffhal-00365899



Experiments and Results
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Experiments - Point Correspondence
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Datasets:

1. FAUST (remeshed)
2. SCHREC20
3. G-S-H (Galgo, Sphynx, 

Human)

Metric:

Princeton benchmark protocol 
(geodesic distance normalized 
by square root area of the 
mesh).

Competitors:

1. BCICP
2. ZoomOut
3. Smooth Shells
4. 3D-CODED
5. FMNet
6. GeoFMNet
7. SurFMNet
8. Unsupervised FMNet
9. Weakly supervised FMNet

10. Deep shells



Experiments - Point Correspondence - Results
err p.p. w/o p.p.

Axiomatic
BCICP 6.4 - -
ZoomOut 6.1 - -
Smooth Shells 2.5 - -

Supervised
3D-CODED 2.5 - -
FMNet 5.9 PMF 11
GeoFMNet 1.9 ZO 3.1

Unsupervised

SurFMet 7.4 ICP 15
Unzip FMNet 5.7 PMF 10
Weakly sup. FMNet 1.9 ZO 3.3
Deep shells 1.7 - -
NeuroMorph 1.5 SL 2.3

FAUST
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Experiments - Point Correspondence - Results
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SHREC20



Experiments - Point Correspondence - Results
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G-S-H



Experiments - Shape Interpolation

Datasets:

1. FAUST
2. MANO

Metric:

1. Conformal distortion
2. Chamfer distance
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Competitors:

1. ShapeFlow
2. LIMP
3. Hamiltonian interpolation



Experiments - Shape Interpolation - Metrics
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Conformal distortion

Chamfer distance



Experiments - Shape Interpolation - Results
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Experiments - Shape Interpolation - Results
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Application - Data Augmentation
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