DiffusionNET: Discretization Agnostic Learning on Surfaces

Recent Advances in 3D Computer Vision

Table of Contents

01

What is DiffusionNet?

Introduction, Overview

<mark>02</mark>

Related Work

PointNET, DGCNN

<mark>03</mark>

Method

Ingredients, Network Architecture

<mark>04</mark>

Results & Discussion

Performance, Limitations

- Plug-and-play neural network for deep learning on 3D surfaces
- Simple, robust and efficient networks
- Ingredients: standard MLP, diffusion and spatial gradient features

02 – Related Work: (1) PointNET

- Neural network architecture for point sets
- High performance on classification, segmentation
- Drawbacks:
 - Point clouds only
 - Not suitable for deformable shapes

4

02 – Related Work: (2) Dynamic Graph CNN

- CNN-based neural network
- Propagates information along edges
- Drawbacks:
 - Bad performance under remeshing
 - Worse propagation on dense point clouds

03 – Method: (1) Multi-layer Perceptron

- Consider D features at every vertex V
- Transform features for all vertices via $f: \mathbb{R}^D \to \mathbb{R}^D$ using standard MLP
- Can't capture spatial structure, no communication between vertices

03 – Method: (2) What is Diffusion?

- Purpose: Spatially propagate features
- Intuition: Use heat equation to model diffusion

Continuous	Discrete		
$\frac{d}{dt}u_t = \Delta u_t$	$\frac{d}{dt}u_t = -M^{-1}Lu_t$ $M \in \mathbb{R}^{VxV}, L \in \mathbb{R}^{VxV}$		

- Learn diffusion time t
- Implemented by diffusion layer

https://www.youtube.com/watch?v=twBcpxrWm5E

03 – Method: (2) Computing Diffusion

Euler methods

- Easy to implement
- Solve sparse linear systems
- May not scale well to large problems

 $h_t(u) = (M + tL)^{-1}Mu$

Spectral acceleration

- Based on Laplacian eigenfunctions
- Diffusion reduces to elementwise
 exponentiation

$$h_t(u) = \Phi \begin{bmatrix} e^{-\lambda_0 t} \\ e^{-\lambda_1 t} \\ \dots \end{bmatrix} \odot (\Phi^T M u)$$

03 – Method: (2) Computing Diffusion ctd.

- 1. Calculate eigenvalue decomposition of $L, M: L\phi_i = \lambda_i M\phi_i$
- 2. Stack eigenvectors in Φ
- 3. Project *u* into spectral basis, express diffusion, reproject:

$$h_{t}(u) \coloneqq \Phi \begin{bmatrix} e^{-\lambda_{0}t} \\ e^{-\lambda_{1}t} \\ \cdots \end{bmatrix} \odot (\Phi^{T}Mu)$$
Reprojection
Project into
spectral basis
Calculate
diffusion
for time t

- Diffusion layer: Radially-symmetric filters only
- Spatial gradient features: **Directional filters**
- Procedure:
 - Precompute gradients
 - Learn features from dot product between gradient pairs
 - Gradients first undergo learned scaling/rotation

- Given a mesh or point cloud with V vertices, for all V:

- Given a mesh or point cloud with V vertices, for all V:
 - Define tangent plane

- Given a mesh or point cloud with V vertices, for all V:
 - Define tangent plane
 - Project neighboring vertices

- Given a mesh or point cloud with V vertices, for all V:
 - Define tangent plane
 - Project neighboring vertices
 - Estimate gradient in tangent plane
 - Express gradients as complex number

- Introduce gradient operator $G \in \mathbb{C}^{V \times V}$
- Calculate spatial gradient $z_u \in \mathbb{C}^V$: $z_u = Gu$
- Stack gradients to form $w_v \in \mathbb{C}^D$
- Learn scalar features $g_v \in \mathbb{R}^D$ via: $g_v(i) = \tanh(Re\{\sum_{j=1}^D \overline{w_v}(i)A_{ij} w_v(j)\})$

03 – Method: (4) DiffusionNET Architecture

— Method: (4) DiffusionNET Architecture

Feature selection:

03

- Basic: 3D vertex coordinates (xyz)
- Rigid & non-rigid invariance: Heat kernel signatures (HKS)
- HKS: network invariant to orientation-preserving deformations

04 — Experiment Results: (1) Classification

- New state-of-the-art in classification on SHREC-11:

Method	Accuracy
GWCNN [Ezuz et al. 2017]	90.3%
MeshCNN [†] [Hanocka et al. 2019]	91.0%
HSN [†] [Wiersma et al. 2020]	96.1%
MeshWalker [†] [Lahav and Tal 2020]	97.1%
PD-MeshNet [†] [Milano et al. 2020]	99.1%
HodgeNet [†] [Smirnov and Solomon 2021]	94.7%
FC [†] [Mitchel et al. 2021]	99.2%
DiffusionNet - xyz [†]	99.4%
DiffusionNet - xyz	99.0%
DiffusionNet - hks [†]	99.5%
DiffusionNet - hks	99.7 %

Source: Lian, Zhouhui & Godil, Afzal & Bustos, Benjamin & Daoudi, Mohamed & Hermans, Jeroen & Kawamura, Shun & Kurita, Yukinori & Lavoué, Guillaume & Nguyen, Hien & Ohbuchi, Ryutarou & Ohkita, Yuki & Ohishi, Yuya & Porikli, Fatih & Reuter, Martin & Sipiran, Ivan & Smeets, Dirk & Suetens, Paul & Tabia, Hedi & Vandermeulen, Dirk. (2011). SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes.. Eurographics Workshop on 3D Object Retrieval. 79-88. 10.2312/3DOR/3DOR11/079-088.

04 – Experiment Results: (2) Molecular Segmentation

- New state-of-the-art in segmentation tasks
- RNA mesh consists of 14k vertices
- Training: 38ms, requiring 2.2GB of GPU memory
- Accurate results for meshes and point clouds

04 – Experiment Results: (3) Human Segmentation

- DiffusionNET directly trains on mid-size inputs
- Scales well to large meshes due to spectral

acceleration

Most other approaches inapplicable to large meshes

Method		small 752 vert	medium 10k vert	large 184k vert
	pre:	288ms	3.55sec	69.5sec
DiffusionNet	train:	19ms	25ms	379ms
(spectral)	infer:	7ms	10ms	154ms
	pre:	104ms	_	_
DiffusionNet	train:	329ms	_	—
(direct)	infer:	81ms	_	_
	pre:	85ms	1.13sec	_
MeshCNN	train:	269ms	2.97sec	—
[Hanocka et al. 2019]	infer:	194ms	2.71sec	-
	pre:	905ms	162sec	_
HSN	train:	188ms	1.08sec	—
[Wiersma et al. 2020]	infer:	68ms	389ms	_
	pre:	n/a	n/a	_
HodgeNet	train:	752ms	7.61sec	_
[Smirnov et al. 2021]	infer:	645ms	6.87sec	—

04 – Experiment Results: (3) Functional Correspondence

DiffusionNET outperforms other methods in nonrigid correspondence

04 – Experiment Results: (4) Discretization Agnostic Learning

Performance of different networks

No diffusion for disconnected components

Diffusion at topological merges

23

Thanks! Any questions?