Volume Rendering of Neural Implicit Surfaces

Lior Yariv

Jiatao Gu Yoni Kasten Yaron Lipman Weizmann Institute of Science Facebook Al Research INTRODUCTION Previous works and paper contribution

02

RELATED WORK

Neural Scene Representation Multi-view 3D Reconstruction

METHODS

DF as a geometric function Volume rendering Bounding the error Sampling Algorithm Training

TABLE OF03CONTENTS

04

05

EXPERMENTS

Qualitative and quantitative results

CONCLUSION Wrapping it up

SUPPLEMENTALS Extra reference material

01 INTRODUCTION

Background and Related Works

INTRODUCTION

- Volume Rendering
- Neural Radiance Field (NeRF)
 - In nutshell
 - Drawbacks?
- VolSDF Contribution
 - New density representation and reconstruction
 - Moving from generic to geometric density function

RELATED WORKS

Neural Scene Representation & Rendering

- Combining neural implicit functions with volume rendering
 - + Expressive representation power
 - + low memory foot-print
 - Recovered geometry
 - Opacity function approximation

RELATED WORKS

- Multi-view 3D Reconstruction
 - Depth-based approaches
 - Complex pipeline
 - Voxel-based approaches
 - + Directly model objects in a volume
 - Limited to low resolution
 - Require accurate object masks

03 Methods

A New Geometric Model Density

- What is SDF?
- Drawback of current model
- Improvement of previous model
- Advantages

- What is SDF?
 - A signed distance function is an n-dimensional implicit function, which associates a scalar value with each point of its n-dimensional domain.

• • • • •

- What is SDF?
- Drawback of current model

Spatial Viewing location direction

Output Output color density

- What is SDF?
- Drawback of current model

 $(x, y, z, \theta, \phi) \rightarrow \frown (r, g, b, \sigma)$

• Geometric volume density at point $x \longrightarrow indicator if x \in volume \Omega$

 $\sigma(x) = \alpha \Psi_{\beta} (-d_{\Omega}(x)) (2) \qquad d_{\Omega}(x) = (-1)^{1_{\Omega}(x)} \min_{y \in \mathcal{M}} ||x - y|| (1)$ $\Psi_{\beta} (\text{CDF}) \text{ of Laplace distribution with } \text{zero mean and } \beta \text{ scale point } y \text{ at surface } \mathcal{M}$ As $\beta \to 0$, $\sigma \to \alpha \ 1_{\Omega} \forall x \in \Omega$ $\alpha, \beta > 0$ learnable smoothing parameters

- What is SDF?
- Drawback of current model

 $(x, y, z, \theta, \phi) \rightarrow (r, g, b, \sigma)$

• Geometric volume density

 $\sigma(x) = \alpha \Psi_{\beta} \left(-d_{\Omega}(x) \right) \quad (2)$

• Advantages

- Volume rendering integral
 - approximating the integrated (i.e., summed) light radiance along this ray reaching the camera

The probability a light particle succeeds traversing the segment [c, x(t)] without bouncing off $T(t) = \exp(-\int_{0}^{t} \sigma(x(s)) ds) \quad (4)$ The volume rendering equation is the expected light along the ray, $I(c,v) = \int_{0}^{\infty} L(x(t), n(t), v)\tau(t)dt (7)$ where L(x, n, v) is the radiance field

• Opacity as CDF:

 $T(t) = \exp(-\int_{0}^{t} \sigma(x(s)) ds) \quad (4)$ $\tau(t) = \sigma(x(t)) \quad T(t) = \frac{d0}{dt}(t) \quad PDF$

- Sampling τ
 - PDF τ is typically extremely concentrated near the object's boundary
 - the choice of the sample points S has a crucial effect on the approximation quality
 - NeRF: second, coarse network was trained specifically for the approximation of the opacity
 - VolSDF: sampling S is computed by a sampling algorithm based on an error bound for the opacity approximation

VolSFD

NeRF

VolSFD

NeRF

Transparency for ray x with sample point s: • $T(t) = \exp(-\int_0^t \sigma(x(s)) ds)$ O(t) = 1 - T(t) $O(t) = 1 - \exp(-\int_0^t \sigma(x(s)) ds)$ $O(t) = 1 - \exp(-\hat{R}(t))$ $\hat{R}(t) = \sum_{i=1}^{k-1} \delta_i \sigma_i + (t - t_k) \sigma_k$

- What about the error in summation? \bullet
 - $\sigma(\overline{x}) = \alpha \Psi_{\beta}(-d_{\Omega}(\overline{x}))$ $\Psi_{\beta} = \begin{cases} \frac{1}{2} \exp\left(\frac{s}{\beta}\right), s \le 0\\ 1 - \frac{1}{2} \exp\left(-\frac{s}{\beta}\right), s > 0 \end{cases}$ $\frac{d}{dt}\Psi_{\beta} = \frac{1}{2\beta}\exp\left(-\frac{|s|}{\beta}\right)$ $\left|\frac{d}{ds}\sigma(x(s))\right| \leq \frac{\alpha}{2\beta} \exp\left(-\frac{d_i^*}{\beta}\right), where \ d_i^* = \min_{s \in [t_i, t_{i+1}]} \|x(s) - y\|$

• This bound can be used to derive an error bound for \widehat{R}

$$\begin{aligned} \left| \frac{d}{ds} \sigma(x(s)) \right| &\leq \frac{\alpha}{2\beta} \exp\left(-\frac{d_i^*}{\beta}\right), where \ d_i^* = \min_{\substack{s \in [t_i, t_{i+1}] \\ y \notin B_i \cup B_{i+1}}} \|x(s) - y\| \\ \hat{R}(t) &= \sum_{i=1}^{k-1} \delta_i \sigma_i + (t - t_k) \sigma_k \\ |E(t)| &\leq \hat{E}(t) = \frac{\alpha}{4\beta} \left(\sum_{i=1}^{k-1} \delta_i^2 \exp\left(-\frac{d_i^*}{\beta}\right) + (t - t_k)^2 \exp\left(-\frac{d_k^*}{\beta}\right)\right) \\ \text{So the error of the appr. opacity } \hat{O} \text{ can be bounded as} \\ |O(t) - \hat{O}(t)| &\leq \exp\left(-\hat{R}(t)\right) \left(\exp\left(\hat{E}(t)\right) - 1\right) \end{aligned}$$

• Taking the maximum over all intervals furnishes a bound $B_{\mathcal{T},\beta}$ as a function of \mathcal{T} and β

 $\left|O(t) - \hat{O}(t)\right| \le \exp\left(-\hat{R}(t)\right)\left(\exp\left(\hat{E}(t)\right) - 1\right)$

 $\max_{t \in [o,M]} \left| O(t) - \widehat{O}(t) \right| \le B_{\mathcal{T},\beta} = \max_{k \in [n-1]} \left\{ \exp\left(-\widehat{R}(t_k)\right) \left(\exp\left(\widehat{E}(t_{k+1})\right) - 1\right) \right\}$

• Where is \mathcal{T} a set of samples $\mathcal{T} = \{t_i\}_{i=1}^n, 0 = t_1 < \dots < t_n = M$

- Using the bound to compute sampling:
- $I(\boldsymbol{c}, \boldsymbol{v}) = \int_0^\infty L(x(t), n(t), \boldsymbol{v})\tau(t)dt$
- $I(\boldsymbol{c}, \boldsymbol{v}) \approx \hat{I}_{\mathcal{S}}(\boldsymbol{c}, \boldsymbol{v}) = \sum_{i=1}^{m-1} \hat{\tau}_i L_i$

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_+)$ so that 6 $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

Setting β as:

 $\beta \geq \frac{\alpha M}{4(n-1)\log(1+\epsilon)}$ For n > 0, $\epsilon > 0$ and $B_{\mathcal{T},\beta} \leq \epsilon$ Here n = 128 was used.

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 6 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

We initialize ${\cal T}$ with uniform sampling ${\cal T}_0$

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 6 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh m samples using \hat{O}^{-1} 12 return S

pick $\beta_+ > \beta$ so that the error bound satisfies the required ϵ bound

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that 6 $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

n samples are added to \mathcal{T} to reduce β_+ while keeping $B_{\mathcal{T},\beta}$ within error bound

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that $B_{\mathcal{T}, \beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 6 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

We use the bisection method (10 max iterations) to search for β_* and update β_+

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_+)$ so that 6 $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

Run iteratively until $B_{\mathcal{T},\beta} \leq \epsilon$ (5 max iter)

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ **3 while** $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter **do** upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that $B_{\mathcal{T}, \beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 6 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh *m* samples using \hat{O}^{-1} 12 return S

Use final ${\mathcal T}$ and eta_+ to est. opacity \hat{O}

Algorithm 1: Sampling algorithm. **Input:** error threshold $\epsilon > 0$; β 1 Initialize $\mathcal{T} = \mathcal{T}_0$ 2 Initialize β_+ such that $B_{\mathcal{T},\beta_+} \leq \epsilon$ 3 while $B_{\mathcal{T},\beta} > \epsilon$ and not max_iter do upsample \mathcal{T} 4 if $B_{\mathcal{T},\beta_+} < \epsilon$ then 5 Find $\beta_{\star} \in (\beta, \beta_{+})$ so that $B_{\mathcal{T},\beta_{\star}} = \epsilon$ Update $\beta_{+} \leftarrow \beta_{\star}$ 6 7 end 8 9 end 10 Estimate \widehat{O} using \mathcal{T} and β_+ 11 $\mathcal{S} \leftarrow$ get fresh m samples using \hat{O}^{-1} 12 return S

(5/5) Training

- 2x MLP:
 - Approximating the SDF of the learned geometry, and global geometry feature z of dimension 256 :
 - $f_{\varphi}(x) = (d(x), z(x)) \in \mathbb{R}^{1+256}$
 - Presenting the scene's radiance field with learnable parameters $\boldsymbol{\psi}$:
 - $L_{\psi}(x,n,v,z) \in \mathbb{R}^3$
 - Two scalar learnable parameters
 - $lpha,\,eta\in\mathbb{R}$, with $lpha=eta^{-1}$
 - Positional enconding for x and v, same as NeRF

(5/5) Training

- For each pixel p a triplet (I_p , c_p , v_p)
 - $I_p \in \mathbb{R}^3$ is its intensity (RGB color)
 - $c_p \in \mathbb{R}^3$ is its camera location
 - $v_p \in \mathbb{R}^3$ is the viewing direction (camera to pixel)
- Training loss:
 - $\mathcal{L}(\theta) = \mathcal{L}_{\text{RGB}}(\theta) + \lambda \mathcal{L}_{\text{SDF}}(\varphi)$ (17)
 - $\mathcal{L}_{\text{RGB}}(\theta) = \mathbb{E}_p \| I_p \hat{I}_S(c_p, v_p) \|_1$ (18) color loss
 - $\mathcal{L}_{\text{SDF}}(\varphi) = \mathbb{E}_{z}(\|\nabla d(z)\| 1)^{2}$ (18) Eikonal loss

EXPERMENTS

04

Method evaluation on the challenging task of multiview 3D surface reconstruction

- Quantitative results for the **DTU dataset**
- DTU multi-view image; different objects; fixed camera and lighting parameters

- Quantitative results for the **DTU dataset**
- DTU multi-view image; different objects; fixed camera and lighting parameters

	Scan	24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean
Chamfer Distance	IDR	1.63	1.87	0.63	0.48	1.04	0.79	0.77	1.33	1.16	0.76	0.67	0.90	0.42	0.51	0.53	0.90
	colmap ₇	0.45	0.91	0.37	0.37	0.90	1.00	0.54	1.22	1.08	0.64	0.48	0.59	0.32	0.45	0.43	0.65
	colmap ₀	0.81	2.05	0.73	1.22	1.79	1.58	1.02	3.05	1.40	2.05	1.00	1.32	0.49	0.78	1.17	1.36
	NeRF	1.92	1.73	1.92	0.80	3.41	1.39	1.51	5.44	2.04	1.10	1.01	2.88	0.91	1.00	0.79	1.89
	VolSDF	1.14	1.26	0.81	0.49	1.25	0.70	0.72	1.29	1.18	0.70	0.66	1.08	0.42	0.61	0.55	0.86
R	NeRF	26.24	25.74	26.79	27.57	31.96	31.50	29.58	32.78	28.35	32.08	33.49	31.54	31.0	35.59	35.51	30.65
PSI	VolSDF	26.28	25.61	26.55	26.76	31.57	31.5	29.38	33.23	28.03	32.13	33.16	31.49	30.33	34.9	34.75	30.38

• Qualitative results for the **DTU dataset**

- Quantitative results for the **BlendedMVS** dataset
- Large collection of 113 scenes. High quality GT.
- 9 different scenes were selected

	Scene	Doll	Egg	Head	Angel	Bull	Robot	Dog	Bread	Camera	Mean
Chamfer l_1	Our Improvement (%)	54.0	91.2	24.3	75.1	60.7	27.2	47.7	34.6	51.8	51.8
DENID	NeRF++	26.95	27.34	27.23	30.06	26.65	26.73	27.90	31.68	23.44	27.55
LOUK	VolSDF	25.49	27.18	26.36	29.79	26.01	26.03	28.65	31.24	22.97	27.08

• Qualitative results for the **BlendedMVS** dataset

NeRF++

GT

• Qualitative results for the **BlendedMVS** dataset

05 CONCLUSION

÷∩

You can enter here a subtitle if you need it

CONCLUSIONS AND REMARKS

- The paper does not have a proof of correctness for the sampling algorithm.
- Representing non-watertight manifolds and/or manifolds with boundaries, such as zero thickness surfaces, is not possible with an SDF
- Assumption of homogeneous density; extending it to more general density models would allow representing a broader class of geometries

CONCLUSIONS AND REMARKS

- High quality geometries can be learned in an unsupervised manner.
- Accurate geometry reconstruction from images can be used for malice purposes.

LIMITATIONS

06 SUPPLEMENTALS

You can enter here a subtitle if you need it

Thank you.