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INTRODUCTION

C1 N e Wolume Rendering
=5 * Neural Radiance Field (NeRF)

e |n nutshell
e Drawbacks?

* VoISDF Contribution
* New density representation and reconstruction

O

* Moving from generic to geometric density function



RELATED WORKS

* Neural Scene Representation & Rendering

* Combining neural implicit functions with volume
rendering

+
+

Expressive representation power
low memory foot-print
Recovered geometry

Opacity function approximation



RELATED WORKS

 Multi-view 3D Reconstruction

* Depth-based approaches
— Complex pipeline

* Voxel-based approaches
+ Directly model objects in a volume
— Limited to low resolution

- Require accurate object masks




METHODS




(1/5) Density As Transformed SDF

What is SDF?
Drawback of current model

Improvement of previous model
Advantages




(1/5) Density As Transformed SDF

What is SDF?

 Asigned distance function is an n-dimensional implicit
function, which associates a scalar value with each point of its
n-dimensional domain.

pixel u
Object
Volume Q
Sampling ray v Object
Surface M
“\
Camera at image

position ¢ (X,y,z)
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(1/5) Density As Transformed SDF

e Whatis SDF?
e Drawback of current model

x, v, z 0, ¢) =P = (1, g b, 0)
— b |

Spatial  Viewing Output Output
location direction color density




(1/5) Density As Transformed SDF

What is SDF?
Drawback of current model

x, v,z 0,0) = = (r, g, b, o)

Geometric volume density at point x /»

= oW, (—d = (~1)!2® min|lx + \
o(x) = aly (—do(x) do(x) = (=1)'e™ min|lx + y|

¥ (CDF) of Laplace distribution with zero mean and f SCS*O
Asp— 0,06 > algVx€EQ 1
a, f > 0 learnable smoothing parameters . V



(1/5) Density As Transformed SDF

What is SDF?
Drawback of current model

x, v,z 0,0) = = (r, g, b, o)

Geometric volume density
o(x) = a¥y (—do(x))

Advantages




(2/5) Volume Rendering of ¢

* Volume rendering integral

 approximating the integrated (i.e., summed) light radiance
along this ray reaching the camera

The probability a light particle

J/ succeeds traversing the o
pixel segment [c, x(t)] without
bouncing off A\
e Surface w . T(t) = exp(—j a(x(s))ds) x
x() =c+ty,t=>0 0

The volume rendering equation is
the expected light along the ray,

o

il 16w = [ La©.n@, v
0
;2252?1 c where L(x, n, v) is the radiance FY@.}Z}I

‘\




(2/5) Volume

Opacity as CDF:
(4)

ray x:
x(t)=c+ty,t=0

unit vector v

position ¢

HOERHC(OENERI(OEL
fully transparent




(2/5) Volume Rendering of ¢

Sampling t

PDF t is typically extremely concentrated near the object’s
boundary

the choice of the sample points S has a crucial effect on the
approximation quality

NeRF: second, coarse network was trained speaﬁcally for the
approximation of the opacity ‘

VolISDF: sampling S is computed by a sampling algorlthm based
error bound for the opacity approximation ~







(2/5) Volume Rendering of ¢

VoISFD NeRF




(3/5) Bound on The Opacity
Approximation Error

Transparency for ray x with sample point s:
t
T(t) = exp(—f a(x(s))ds)
0]
0(t)=1-T(t) .
ot)=1- exp(—J a(x(s))ds)
0]

0(t) =1 —exp(—R(t))

k-1
RO = ) 80; + (¢~ t)og
i=1




(3/5) Bound on The Opacity
Approximation Error

What about the error in summati

o(x) = a¥p(—dg(x))
(1 S
E exp (E) , <0

1= Lep(=2),s 20
5 €XP ; ,S




(3/5) Bound on The Opacity
Approximation Error

. This bound can be used to derive an error bound for R

dr
— exp < é),where

R() = Z §;0; + (t — ty) oy

E@I < E@®) = (z s (_ %) + (. <_%




(3/5) Bound on The Opacity
Approximation Error

 Taking the maximum over all intervals furnishes a bound
By g as a function of J" and [3

|0(t) — 0()| < exp (—ﬁ(t)) (exp (E(t)) ul 1)

—0 < - )
Jmax [0(t) = 0(t)| < Brp = max {exp(=Rt)

e Whereis T aset of samples
T={t},0=t; < <t, =M




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7,
2 Initialize 54 such that By g, <€
3 while B7 g > € and not max_iter do
4 | upsample 7
5
6

Using the bound to compute sampling:
I(c,v) = [ Lex(@®),n(®), v)T(®)dt
I(c,v) = Is(c,v) = T il if By 5, < ethen
Find 8, € (B, 5+) so that
Br g, =€
Update 5, < i
end
end
Estimate O using 7 and B4+
11 S + get fresh m samples using O~!
12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3

Setting B as: 1 Initialize 7 = 7,

2 Initialize 54 such that By g, <€

3 while B7 g > € and not max_iter do
4 | upsample 7
5
6

" aM
= 4(n—1)log(1 + €)
Forn>0,e>0and Brg<e€

Here n = 128 was used.

if By 3. < ethen
Find 8, € (B, 5+) so that
Brg, =€
Update 5, < i
end
end
Estimate O using 7 and B4+
11 S + get fresh m samples using O~!
12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7,
2 Initialize 54 such that By g, <€

We initialize T with uniform sampling T

3 while B7 g > € and not max_iter do
upsample T
if By 3. < ethen
Find 8, € (B, 5+) so that
Brg, =€
Update 5, < i
end
9 end
10 Estimate O using 7 and B4+

11 S + get fresh m samples using O~!

12 return S




Algorithm 1: Sampling algorithm.

(4/5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7
pick S+ > f so that the error bound 2 Initialize 54 such that By g, <€

satisfies the required € bound 3 while B1 g > € and not max_iter do
upsample T
if By 3. < ethen
Find 8, € (B, 5+) so that
Br g, =€
Update 5, < i
end

9 end

10 Estimate O using 7 and B4+

11 S + get fresh m samples using O~!
12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7,
2 Initialize 54 such that By g, <€
3 while B7 g > € and not max_iter do

n samples are added to T to reduce £ upsample 7

while keeping By g within error bound if By 3. < ethen
Find 8, € (B, 5+) so that

Br,p, =€
Update 5, < i
end

9 end
10 Estimate O using 7 and 3

11 S « get fresh m samples using O 1

12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7,
2 Initialize 54 such that By g, <€
3 while B7 g > € and not max_iter do

upsample 7

if By 3. < ethen
We use the bisection method (10 max Find B, € (8, 84 ) so that
iterations) to search for f+ and update £ Br, =€

Update 5, < i
end

9 end
10 Estimate O using 7 and 3

11 S + get fresh m samples using O~!

12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3

1 Initialize 7 = 7,

2 Initialize 54 such that By g, <€

3 while B7 g > € and not max_iter do
upsample T
if By 3. < ethen

Run iteratively until By g < € (5 max iter) Find 3, € (B, B+) so that
Brg, =€
Update 5, < i

end

9 end
10 Estimate O using 7 and 3

11 S + get fresh m samples using O~!

12 return S




Algorithm 1: Sampling algorithm.
(4 /5) Sampling Algorithm Input: error threshold € > 0; 3
1 Initialize 7 = 7,
2 Initialize 54 such that By g, <€

3 while B7 g > € and not max_iter do
upsample T
if By 3. < ethen
Find 8, € (B, 5+) so that
Brg, =€
Update 5, < i
end
9 end
Use final T and S, to est. opacity O 10 Estimate O using 7 and 8. A
11 S < get fresh m samples using O !
12 return S




B, heatmap / pixel

(4/5) Sampling Alogorithm - Qualitative

iteration 1

approximated

true opacity

SDF
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B, heatmap / pixel

(4/5) Sampling Alogorithm - Qualitative

approximated

true opacity

SDF

iteration 2



B, heatmap / pixel

(4/5) Sampling Alogorithm - Qualitative

approximated
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(4/5) Sampling Alogorithm - Qualitative
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iteration 1 1teration 2 iteration 5







(5/5) Training

2x MLP:

Approximating the SDF of the learned geometry, and global
geometry feature z of dimension 256 :

* Jo®) = (d(x), z(x)) € RI*2°
Presenting the scene’s radiance field with learnable
parameters y : i

« L,xnvz) ERS
Two scalar learnable parameters
* o, fER, witha=p"

Positional enconding for x and v, same as NeRF




(5/5) Training

* Foreach pixel p a triplet (/,, ¢,, v,)
* [,eR3isits intensity (RGB color)

. CHE R3is its camera location
* v, ER3is the viewing direction (camera to pixel)

* Training loss:
* L(0) = Lrgp(0) + 4 Lgpr(g)
e Lpgp(0) = IEp”Ip — is(cp, vp)||1 color loss
*  Lspelo) = Ex([IVd(2) || —1)? Eikonal loss
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Multi-view 3D reconstruction

* Quantitative results for the DTU dataset
 DTU multi-view image; different objects; fixed camera and

lighting parameters




Multi-view 3D reconstruction

* Quantitative results for the DTU dataset
 DTU multi-view image; different objects; fixed camera and
lighting parameters

Scan 24 37 40 35 63 65 69 83 97 105 106 110 114 118 122

IDR 1.63 187 0.63 048 1.04 0.79 0.77 1.16 0.76 0.67 090 042 0.51 0.53
colmapr; 045 0.91 037 0.37 090 1.00 0.54 1.08 0.64 048 0.59 032 0.45 043
colmap, 0.81 2.05 0.73 1.22 1.79 1.58 1.02 1.40 2.05 1.00 1.32 049 0.78 1.17
NeRF 1.92 1.73 192 080 341 139 1.51 2.04 1.10 1.01 283 091 1.00 0.79
VoISDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.18 0.70 0.66 1.08 0.42 0.61 0.55

NeRF  26.24 25.74 26.79 27.57 31.96 31.50 29.58 28.35 32.08 33.49 31.54 31.0 35.59 35.51
VoISDF  26.28 25.61 26.55 26.76 31.57 31.5 29.38 28.03 32.13 33.16 31.49 30.33 34.9 34.75
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Multi-view 3D reconstruction

e Qualitative results for the DTU dataset
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Chamfer [,

PSNR

Multi-view 3D reconstruction

e (Quantitative results for the BlendedMVS dataset
* Large collection of 113 scenes. High quality GT.
e 9 different scenes were selected

Scene Doll Egg Head Angel Bull Robot Dog Bread
Our Improvement (%) 54.0 91.2  24.3 75.1 60.7 27.2 477  34.6

NeRF++ 26.95 27.34 27.23 30.06 26.65 26.73 2790 31.68
VoISDF 25.49 27.18 26.36 29.79 26.01 26.03 28.65 31.24

Camera
51.8
23.44
22.97

Mean
51.8
27.55
27.08 |




Multi-view 3D reconstruction

e Qualitative results for the BlendedMVS dataset
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Multi-view 3D reconstruction

e Qualitative results for the BlendedMVS dataset
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CONCLUSIONS AND REMARKS

The paper does not have a proof of correctness
for the sampling algorithm.

Representing non-watertight manifolds and/or
manifolds with boundaries, such as zero ,
thickness surfaces, is not possible with an SDF.
Assumption of homogeneous density; extendin\g

it to more general density models would allow *
representing a broader class of geometries

V



CONCLUSIONS AND REMARKS

High quality geometries can be learned in an
unsupervised manner.

Accurate geometry reconstruction from images
can be used for malice purposes.
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