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Background and Related Works



INTRODUCTION

• Volume Rendering
• Neural Radiance Field (NeRF)
• In nutshell
• Drawbacks?

• VolSDF Contribution
• New density representation and reconstruction

• Moving from generic to geometric density function



RELATED WORKS

• Neural Scene Representation & Rendering
• Combining neural implicit functions with volume 

rendering
+ Expressive representation power
+ low memory foot-print
− Recovered geometry
− Opacity function approximation



• Multi-view 3D Reconstruction
• Depth-based approaches

− Complex pipeline

• Voxel-based approaches
+ Directly model objects in a volume

− Limited to low resolution

− Require accurate object masks

RELATED WORKS



METHODS
A New Geometric Model Density
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• What is SDF?
• Drawback of current model
• Improvement of previous model
• Advantages 

(1/5) Density As Transformed SDF



• What is SDF?
• A signed distance function is an n-dimensional implicit 

function, which associates a scalar value with each point of its 
n-dimensional domain.

(1/5) Density As Transformed SDF

Sampling ray v

image

pixel u

Object 
Surface Μ

Object 
Volume Ω

Camera at 
position c (x,y,z)





vo
lu

m
et

ric
 d

en
sit

y 



sig
ne

d 
di

st
an

ce
 fu

nc
tio

n 



pr
od

uc
ed

 re
nd

er
in

g 



• What is SDF?
• Drawback of current model

(1/5) Density As Transformed SDF
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• What is SDF?
• Drawback of current model

• Geometric volume density at point x

(1/5) Density As Transformed SDF

(x, y, z, θ, ϕ) (r, g, b, σ)

σ(x) = αΨβ (−dΩ(x))  (2) 

Ψβ (CDF) of Laplace distribution with zero mean and β scale
As β ⟶ 0, σ ⟶ α 1Ω ∀ x ∈ Ω
α, β > 0 learnable smoothing parameters 

!! " = −1 "! # min$∈ℳ " − ) (1)

indicator if x ∈ volume Ω

point y at surface M



• What is SDF?
• Drawback of current model

• Geometric volume density

• Advantages

(1/5) Density As Transformed SDF

(x, y, z, θ, ϕ) (r, g, b, σ)

σ(x) = αΨβ (−dΩ(x))  (2)



• Volume rendering integral
• approximating the integrated (i.e., summed) light radiance 

along this ray reaching the camera

(2/5) Volume Rendering of σ

unit vector v

pixel

Surface 
normal n

camera 
position c

[c, x(t)] 

ray	x:
' ( = * + (,, t ≥ 0

The probability a light particle 
succeeds traversing the 
segment [c, x(t)] without 
bouncing off
! " = exp(−)

!

"
* + , -,) (4)

The volume rendering equation is 
the expected light along the ray, 

where L(x, n, v) is the radiance field

0 1, 3 = )
!

#
4 + " , 5 " , 3 6 " -" (7)



• Opacity as CDF:

(2/5) Volume Rendering of σ
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• Sampling τ
• PDF τ is typically extremely concentrated near the object’s 

boundary
• the choice of the sample points S has a crucial effect on the 

approximation quality
• NeRF: second, coarse network was trained specifically for the 

approximation of the opacity
• VolSDF: sampling S is computed by a sampling algorithm based on an 

error bound for the opacity approximation 

(2/5) Volume Rendering of σ



(2/5) Volume Rendering of σ
VolSFD NeRF



(2/5) Volume Rendering of σ
VolSFD NeRF



• Transparency for ray x with sample point s:

(3/5) Bound on The Opacity 
Approximation Error
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• What about the error in summation?

(3/5) Bound on The Opacity 
Approximation Error
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• This bound can be used to derive an error bound for !"

• So the error of the appr. opacity Ô can be bounded as

(3/5) Bound on The Opacity 
Approximation Error
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• Taking the maximum over all intervals furnishes a bound 
#M,N as a function of $ and β

• Where is $ a set of samples
* = {,'}'("

) , 0 = ," < ⋯ < ,) = 2

(3/5) Bound on The Opacity 
Approximation Error

4 % − 64(%) ≤ exp − 67 % exp 6L % − 1
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• Using the bound to compute sampling:

• S T, U = ∫!
<
W . % , X % , Y 3 % 0%

• S T, U ≈ [S= T, U = ∑%&'
>)' 3̂%W%

(4/5) Sampling Algorithm



Setting β as:

3 ≥
52

4 7 − 1 log 1 + <
For n > 0, < > 0 and =*,, ≤ <
Here n = 128 was used.

(4/5) Sampling Algorithm



We initialize M with uniform sampling M0

(4/5) Sampling Algorithm



pick β+ > β so that the error bound 
satisfies the required ^ bound

(4/5) Sampling Algorithm



n samples are added to M to reduce β+

while keeping P9,* within error bound

(4/5) Sampling Algorithm



We use the bisection method (10 max 
iterations) to search for β* and update β+

(4/5) Sampling Algorithm



Run iteratively until P9,* ≤ ^ (5 max iter)

(4/5) Sampling Algorithm



Use final M and β+ to est. opacity Ô

(4/5) Sampling Algorithm



(4/5) Sampling Alogorithm - Qualitative

approximated

true opacity

SDF

error bound

true opacity error

β +
he

at
m

ap
 / 

pi
xe

l



approximated

true opacity

SDF

error bound

true opacity error

β +
he

at
m

ap
 / 

pi
xe

l
(4/5) Sampling Alogorithm - Qualitative
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(4/5) Sampling Alogorithm - Qualitative



(4/5) Sampling Alogorithm - Qualitative



• 2x MLP:
• Approximating the SDF of the learned geometry, and global 

geometry feature z of dimension 256 : 

• fφ(x) = (d(x), z(x)) ∈ ℝ1+256

• Presenting the scene’s radiance field with learnable 
parameters ψ :

• Lψ(x,n,v,z) ∈ ℝ3

• Two scalar learnable parameters 

• α, β ∈ ℝ, with α = β−1 

• Positional enconding for x and v, same as NeRF

(5/5) Training



• For each pixel p a triplet (Ip , cp , vp)
• Ip ∈ ℝ3 is its intensity (RGB color) 

• cp ∈ ℝ3 is its camera location 

• vp ∈ ℝ3 is the viewing direction (camera to pixel) 

• Training loss:
• ℒ(?) = ℒRGB(?) + @ ℒSDF(A)            (17)

• ℒRGB(?) = E- F- − GF.(H-, I-) 1 (18) color loss

• ℒSDF(A) = E/( ∇! L −1)0 (18) Eikonal loss 

(5/5) Training



EXPERMENTS
Method evaluation on the challenging task

of multiview 3D surface reconstruction 
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• Quantitative results for the DTU dataset
• DTU multi-view image; different objects; fixed camera and 

lighting parameters

Multi-view 3D reconstruction 



• Quantitative results for the DTU dataset
• DTU multi-view image; different objects; fixed camera and 

lighting parameters

Multi-view 3D reconstruction 



• Qualitative results for the DTU dataset

Multi-view 3D reconstruction 



• Qualitative results for the DTU dataset

Multi-view 3D reconstruction 



• Quantitative results for the BlendedMVS dataset
• Large collection of 113 scenes. High quality GT.
• 9 different scenes were selected

Multi-view 3D reconstruction



• Qualitative results for the BlendedMVS dataset

Multi-view 3D reconstruction



• Qualitative results for the BlendedMVS dataset

Multi-view 3D reconstruction



• Qualitative results for the BlendedMVS dataset

Multi-view 3D reconstruction



• Qualitative results for the BlendedMVS dataset

Multi-view 3D reconstruction
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• The paper does not have a proof of correctness 
for the sampling algorithm.

• Representing non-watertight manifolds and/or 
manifolds with boundaries, such as zero 
thickness surfaces, is not possible with an SDF

• Assumption of homogeneous density; extending 
it to more general density models would allow 
representing a broader class of geometries 

CONCLUSIONS AND REMARKS



• High quality geometries can be learned in an 
unsupervised manner.

• Accurate geometry reconstruction from images 
can be used for malice purposes. 

CONCLUSIONS AND REMARKS



• Geometry for unseen regions is not well defined 
and can be completed arbitrarily by the 
algorithm (a), (b).

• Homogeneous texture-less areas are hard to 
reconstruct faithfully (c). 

LIMITATIONS
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Thank you.


