

Seminar: Recent Advances in 3D Computer Vision

Pre-meeting, 21.07.2022

Björn Häfner, Marvin Eisenberger

https://luanfujun.github.io/InverseMeshSVBRDF/

21st July, 2022

https://luanfujun.github.io/InverseMeshSVBRDF/

21st July, 2022

https://www.matthewtancik.com/nerf

https://www.matthewtancik.com/nerf

21st July, 2022

3D Shape Analysis

https://people.csail.mit.edu/smirnov/hodgenet/

3D Shape Analysis

https://openaccess.thecvf.com/content_ICCV_2019/papers/Niemeyer_Occupancy_Flow_4D_Reconstruction_by_Learning_Part icle_Dynamics_ICCV_2019_paper.pdf

21st July, 2022

3D Shape Analysis

https://openaccess.thecvf.com/content_CVPR_2020/html/Eisenberger_Smooth_Shells_Multi-Scale_Shape_Registration_With _Functional_Maps_CVPR_2020_paper.html

Organisation

- Time: In the week of Oct. 10 Oct. 14, 2022
- Place: Virtual via Zoom: <u>https://tum-conf.zoom.us/j/65552578169</u>
- Website: <u>https://vision.in.tum.de/teaching/ws2022/3dcv</u>
 Password: 3dcv_ws22
- Email: <u>3dcv-ws22@vision.in.tum.de</u>

What you will learn

Get an overview on recent research in 3D
 Computer Vision and Applications

• Read and understand scientific publications

• Prepare and give a talk

• Write a scientific report

Preparation

- You do not need to (and should not) work on your topic alone
- Meet at least twice with your supervisor
- It is your responsibility to contact your supervisor for these meetings

Presentation

Recommended structure

- 1. Introduction of the problem
- 2. Approach
- 3. Results
- 4. Summary

- **25** minutes talk + **15** minutes discussion
- use visualizations
- number your slides
- do not make slides full of text
- explain things you had problems understanding when first reading your paper in more detail
- reference the original author and conference/journal name

Report

- Overview and main contributions of the assigned topic
- Not a copy of your assigned material, focus on parts that you found interesting but discuss them more in-depth or concepts you had to do additional work to understand
- The report is due 2 weeks after the talk and gives you the chance to make up for questions that were left
- Address the open questions left from the Q&A session.
- 6-10 pages
- Use the LaTeX template from the web page
- Use your text editor of choice if you must but keep the style similar to the template

		Г
		L
		L

Evaluation Criteria

- Attendance at each meeting is necessary!
- Participation (questions, discussions) influences the final grade.
- a. Choose the main aspects and interesting subtopics
- b. Understand them in every detail (it may be necessary to check related articles or text books)
- c. Prepare the topic such that it is understandable to the other participants of the seminar

1. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

https://www.matthewtancik.com/nerf

21st July, 2022

Seminar: Recent Advances in 3D Computer Vision

15

2. Plenoxels: Radiance Fields without Neural Networks

https://alexyu.net/plenoxels/

21st July, 2022

3. DeepSDF

https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_f or_Shape_Representation_CVPR_2019_paper.html

21st July, 2022

4. Convolutional Occupancy Networks

https://pengsongyou.github.io/conv_onet

5. Volume Rendering of Neural Implicit Surfaces

https://lioryariv.github.io/volsdf/

21st July, 2022

6. IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from Photometric Images

https://kai-46.github.io/IRON-website/

7. Unified Shape and SVBRDF Recovery using Differentiable Monte Carlo Rendering

https://luanfujun.github.io/InverseMeshSVBRDF/

8. The Heat Method for Distance Computation

https://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/paper.pdf

9. DiffusionNet: Discretization Agnostic Learning on Surfaces

http://www.lix.polytechnique.fr/~maks/papers/DiffusionNet_final.pdf

10. HodgeNet: Learning Spectral Geometry on Triangle Meshes

https://dl.acm.org/doi/pdf/10.1145/3450626.3459797

11. ZoomOut: Spectral Upsampling for Efficient Shape Correspondence

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut.pdf

12. NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

https://openaccess.thecvf.com/content/CVPR2021/papers/Eisenberger_NeuroMorph_Unsupervised_Shape_Interpolation_and _Correspondence_in_One_Go_CVPR_2021_paper.pdf

21st July, 2022

13. Breaking Good: Fracture Modes for Realtime Destruction

https://www.silviasellan.com/pdf/papers/fracture-harmonics.pdf 21st July, 2022 Seminar: Recent Advances in 3D Computer Vision

Registration

- Computer Science & exchange students apply through the TUM Matching platform (<u>matching.in.tum.de</u>)
- There are 12 places in total
- Everyone present at the pre-meeting gets priority in the matching system, please post your name, TUM-Kennung and email in the chat in one message

Assignment of Topics

- Website: <u>https://vision.in.tum.de/teaching/ws2022/3dcv</u> Password: 3dcv_ws22
- If you got assigned to this seminar, send us an email to <u>3dcv-ws22@vision.in.tum.de</u> with your **four** favorite topics
- Topics will be assigned by first come first serve

Any Questions?

- Webpage: https://vision.in.tum.de/teaching/ws2022/3dcv
- Password: 3dcv_ws22
- Email: <u>3dcv-ws22@vision.in.tum.de</u>

