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Topics Covered

* Introduction
— Structure from Motion (SfM)
— Simultaneous Localization and Mapping (SLAM)

* Bundle Adjustment
- Energy Function
— Non-linear Least Squares
— Exploiting the Sparse Structure

* Triangulation



Structure from Motion

Agarwal et al., “Building Rome in a day”, ICCV 2009, “Dubrovnik” image set

3D reconstruction using a set of unordered images

* Requires estimation of 6DoF poses



Simultaneous Localization and Mapping (SLAM) TUTI

Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM”, ECCV 2014

« Estimate 6DoF poses and map from sequential image data

« Update once new frames arrive



Problem Definition SfM / Visual SLAM TUmM

Estimate camera poses and map from a set of images
* Input

Set ofimages Iy, = {1y, 1}, ..., 1.}

Additional input possible

» Stereo
* Depth
* Inertial measurements
« Control input fr3/long_office_household sequence,
TUM RGB-D benchmark
* Qutput

Camera pose estimates 'T; € SE(3),
also written as §; = (log Ti)v 1 € {0,1,...,¢}

Environment map M

Mur-Artal et al., 2015



Typical StTM Pipeline

1) Map initialization
— Using 2D-to-2D correspondences
— Recover pose (stereo pair if available)
— Triangulate landmarks using pose

v

2) Localization with known map
— Using 2D-to-3D correspondences

l

3) Mapping with known poses
— Using 2D-to-2D correspondences
— Triangulation

l

4) Joint refinement of map and poses
— Using 2D-to-2D correspondences
— Bundle adjustment

lterate to add new frames




Visual SLAM TUT

SLAM C SfM, with special focus:
« Sequential image data
« Data arrives sequentially

StM SLAM

 Preferably realtime
« More focus on trajectory

Technical solutions:
« Windowed optimization
« Selection of keyframes \

« Removal of keyframes (e.g. marginalization)

=% Accumulation of drift

« Detect loop closures
* Global mapping in separate thread
(e.g. pose graph optimization)

1 Loop closure
Odometry o

* No global mapping
* Incremental tracking only

e Local map possible Clemente et al., RSS 2007




Landmarks and Features

m

CT,i

« The map consists of 3D locations of landmarks

M = {ml,mz, ...,mS}

—

yT,i

« Forimage 7, the set of 2D image coordinates of detected features is denoted

YT = {yT,l’ yr,2’ tee yr,N}

* Known data association:
Feature 7 in image 7 corresponds to landmark j = ¢_;

(1<i<N,1<j<58)



Bundle Adjustment Energy TUTI

E (&., M) = (50 S 50) 0e (& © &%) Qggglgtﬁ)r

] G & T -
+— ( i ( ,m_ )) >-1 ( . —h < ,m, )) Reprojection
Z Z y T Yz Yz i error

T=O i=1

» Pose prior: Fix absolute pose ambiguity

— In this case equivalent to keeping &, = &’
— Keep absolute pose information e.g. when first frame is marginalized
 Additional prior to fix scale ambiguity might be necessary

@ @ @ 3D coordinates of map points

.

Reprojection errors

Absolute pose fixed by &°

H & @ @

Camera poses



Energy Function as Non-linear Least Squares TUTI

(g,
0
 Residuals as function of state vector X :
r'(x):= & 6 & x:=| &
m;
ri X)=y,;,—h <‘g‘t, mct,i> :
s,

o Stack the residuals in a vector-valued function und collect the residual covariances on the
diagonal blocks of a square matrix

(w— )
( I'O(X) \ ZO,% 0 0
y -1
r(x) := 0. (0 W = O Ew )
r y(X) o ... 0 X!
\ ‘ ! ) \ yl‘,Nt)

 Rewrite energy functionas  E(X) = Er(X)TWr(X)



Recap: Gauss-Newton Method

- Idea: Approximate Newton’s method to minimize E(X)
« Approximate E(X) through linearization of residuals

. |
Ex) = Er(x) Wr(x)

= % (r (Xk) +J, (X—Xk)>TW (r (Xk) + Ji (X—Xk)>
— %l’ (Xk)TWl’ (Xk) +r (Xk)TWJk (X - Xk) +% <X — Xk>TJlIWJk (X -

» Finding root of gradient as in Newton’s method leads to update rule

V. Ex) =b] + (x—x,) H,

k iteration index

J, = V,r(x)

X=Xk

Xy)

_ —1
X1 = X — Hk b,

V.Ex) =0  if  x=x,—H;'b

* Pros:

» Faster convergence than gradient descent (approx. quadratic convergence rate)
» Cons:

- Divergence if too far from local optimum (H not positive definite)

« Solution quality depends on initial guess
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Structure of the Bundle Adjustment Problem

. b, and H, sum terms from individual residuals:

t N, t N
— ho g _ O
b=b0+ 3 Y b= ()2 +zz<>zﬂk>
=0 i=1 =0 i=1
t N, t N,
0 _

=0 i=1 =0 i=1
J? Jacobian of pose prior
Jz’i Jacobian of residuals for feature 7 in image 7

 What is the structure of these terms?

TuTi
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Structure of the Bundle Adjustment Problem  TUTI

I{O

NT
“H)+ Y Y= (1)

=0 i=1

Zoe 1M
> I

T

=0 i=1

r'x,) B
rZ,i(Xk) .

Diagonal, typically S > ¢

50+ 3 Y (1) = (1)
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Example Hessian of a BA Problem

Lourakis et al., 2009

Large, but sparse!

How to invert efficiently?
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Exploiting the Sparse Structure

* |ldea:
Apply the Schur complement to solve the system in a partitioned way

He Hg,
HkAX — — bk q H § H

Axg
AX

1
=P Ax, = - (Hg - HHih By ) (b~ HHiolib, )

—p Ax = —H (bm + ngAx,:)

* Is this any better?

)

b,

b

m
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Exploiting the Sparse Structure

-1
— —1 —1
AX, = — (H& - H, H,L H ) (bg — H, H L b )

mm--mé

mm —m




Effect of Loop Closures on the Hessian TUTI

Full Hessian &

§1/

| :

Reduced pose Hessian

&

&o

Band matrix Before loop closure
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Effect of Loop Closures on the Hessian TUTI

Full Hessian &

§1/

| :

Reduced pose Hessian

&

&o

No band matrix: costlier to solve After loop closure
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Further Considerations TUT

Many methods to improve convergence / robustness / run-time efficiency, e.qg.

« Use matrix decompositions (e.g. Cholesky) to perform inversions

« Levenberg-Marquardt optimization improves basin of convergence

« Heavier-tail distributions / robust norms on the residuals can be implemented using iteratively
reweighted least squares

* Preconditioning

* Hierarchical optimization

 Variable reordering

« Delayed relinearization
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Triangulation Ut

* Find landmark position given the camera poses
* |Ideally, the rays should intersect

* In practice, many sources of error: pose estimates, feature detections and camera model /
intrinsic parameters
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Triangulation TUm

. Goal: Reconstruct 3D point X = (x,y, z, w)' € P’ from 2D image observations ¥ ..., Yu ) for

known camera poses { T, ..., Ty}

 Linear solution: Find 3D point such that reprojections equal its projection

(P, \
- Foreachimage i, let T. = P> and y. = u
’ l p3 l V
0 0 0 1,
X/psX
- Projecting X yields y; =7 (Tig) — <p1~ P3~>
P,X/p;sX 5 5
X = X
- Requiring y; = y; gives two linear equations per image: p1~ up3~
PoX = VP3X

— Leads to system of linear equations AX = (), two approaches to solve:
- Set w = 1 and solve non-homogeneous least squares problem
— Find nullspace of A using SVD, then scale such that w = 1

N
« Non-linear least squares on reprojection errors (more accurate): min Z ly; — yl’”%
X
i=1

« Different solutions for different methods in the presence of noise



Exercises TUTI

Exercise sheet 4 ceres::Solver: :0ptions ceres options;
i i ti . iterati
* Implement components of SfM pipeline ceres_options.max num_iterations

ceres options.linear solver type

« BA: Ceres can do the Schur complement P ceres::SPARSE SCHUR;

« Triangulation: use OpenGV'’s triangulate function 22:.22—"1;’21325“‘;ﬁ;ﬁﬁ;ajﬁmmary
Solve(ceres options, &problem,
&summary) ;
std: :cout << summary.FullReport() <<
std: :endl;

.
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Next slide

Exercise sheet 5
* Implement components of odometry
« Similar to sheet 4, but:
— More efficient 2D-3D matching using approximate pose of previous frame
— New keyframe if number of matches too small
— New landmarks by triangulation from stereo pair
— Keep runtime bounded by removing old keyframes
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Summary

StM

« Estimate map and camera poses from set of images
« SLAM: Sequential data, real-time

* Odometry: No global mapping

Bundle Adjustment
* Non-linear least squares problem
« Sparse structure of Hessian can be exploited for efficient inversion

Triangulation
 Linear and non-linear algorithms
 Differences in the presence of noise
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