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Topics Covered

• Introduction

− Structure from Motion (SfM)

− Simultaneous Localization and Mapping (SLAM)


• Bundle Adjustment

− Energy Function

− Non-linear Least Squares

− Exploiting the Sparse Structure


• Triangulation
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Structure from Motion

• 3D reconstruction using a set of unordered images


• Requires estimation of 6DoF poses
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Agarwal et al., “Building Rome in a day”, ICCV 2009, “Dubrovnik” image set



 Simultaneous Localization and Mapping (SLAM)

• Estimate 6DoF poses and map from sequential image data


• Update once new frames arrive
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Engel et al., “LSD-SLAM: Large-Scale Direct Monocular SLAM”, ECCV 2014



Problem Definition SfM / Visual SLAM
Estimate camera poses and map from a set of images


• Input


Set of images   


Additional input possible

• Stereo

• Depth

• Inertial measurements

• Control input


• Output


Camera pose estimates ,


also written as                    


Environment map 

I0:t = {I0, I1, …, It}

Ti ∈ SE(3)
ξi = (log Ti)∨ i ∈ {0,1,…, t}

M
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Mur-Artal et al., 2015

fr3/long_office_household sequence,

TUM RGB-D benchmark



Typical SfM Pipeline
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1) Map initialization

− Using 2D-to-2D correspondences

− Recover pose (stereo pair if available)

− Triangulate landmarks using pose

2) Localization with known map

− Using 2D-to-3D correspondences

3) Mapping with known poses

− Using 2D-to-2D correspondences

→ Triangulation

4) Joint refinement of map and poses

− Using 2D-to-2D correspondences

→ Bundle adjustment



Visual SLAM

SLAM  SfM, with special focus:

• Sequential image data

• Data arrives sequentially

• Preferably realtime

• More focus on trajectory


Technical solutions:

• Windowed optimization

• Selection of keyframes

• Removal of keyframes (e.g. marginalization)


 Accumulation of drift

• Detect loop closures

• Global mapping in separate thread


(e.g. pose graph optimization)


Odometry

• No global mapping

• Incremental tracking only

• Local map possible

⊂
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SLAMSfM

Clemente et al., RSS 2007

Loop closure



Landmarks and Features

• The map consists of 3D locations of landmarks


• For image , the set of 2D image coordinates of detected features is denoted


• Known data association:

Feature  in image  corresponds to landmark 	 ( , )

τ

i τ j = cτ,i 1 ≤ i ≤ N 1 ≤ j ≤ S
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M = {m1, m2, …, mS}

Yτ = {yτ,1, yτ,2, …, yτ,N}

mcτ,i

ξτ

yτ,i



Bundle Adjustment Energy




• Pose prior: Fix absolute pose ambiguity

− In this case equivalent to keeping 

− Keep absolute pose information e.g. when first frame is marginalized


• Additional prior to fix scale ambiguity might be necessary

E (ξ0:t, M) =
1
2 (ξ0 ⊖ ξ0)⊤ Σ−1

0,ξ (ξ0 ⊖ ξ0)

+
1
2

t

∑
τ=0

Nτ

∑
i=1

(yτ,i − h (ξτ, mcτ,i))
⊤

Σ−1
yτ,i (yτ,i − h (ξτ, mcτ,i))

ξ0 = ξ0
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m0

ξ0

mSm1 m2

ξ1 ξ2 ξt

…

…
Absolute pose fixed by ξ0

Reprojection errors

3D coordinates of map points

Camera poses

Absolute

pose prior

Reprojection

error



Energy Function as Non-linear Least Squares

• Residuals as function of state vector 





• Stack the residuals in a vector-valued function und collect the residual covariances on the 
diagonal blocks of a square matrix





• Rewrite energy function as  

x

r0(x):= ξ0 ⊖ ξ0

ry
t,i(x):= yt,i − h (ξt, mct,i)

r(x) :=

r0(x)
ry

0,1(x)
⋮

ry
t,Nt

(x)

W :=

Σ−1
0,ξ 0 ⋯ 0

0 Σ−1
y0,1

⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Σ−1

yt,Nt
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x :=

ξ0
⋮
ξt

m1
⋮

mS

E(x) =
1
2

r(x)⊤Wr(x)



Recap: Gauss-Newton Method

• Idea: Approximate Newton’s method to minimize 

• Approximate  through linearization of residuals





• Finding root of gradient as in Newton’s method leads to update rule





• Pros:

• Faster convergence than gradient descent (approx. quadratic convergence rate)


• Cons:

• Divergence if too far from local optimum (  not positive definite)

• Solution quality depends on initial guess

E(x)
E(x)

Ẽ(x) =
1
2

r̃(x)⊤Wr̃(x)

=
1
2 (r (xk) + Jk (x − xk))

⊤
W (r (xk) + Jk (x − xk))

=
1
2

r (xk)⊤ Wr (xk) + r (xk)⊤ WJk

=:b⊤
k

(x − xk) +
1
2 (x − xk)⊤ J⊤

k WJk

=:Hk

(x − xk)

∇xẼ(x) = b⊤
k + (x − xk)⊤ Hk

∇xẼ(x) = 0 iff x = xk − H−1
k bk

H
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 iteration indexk

xk+1 = xk − H−1
k bk

Jk := ∇xr(x)
x=xk



Structure of the Bundle Adjustment Problem

•  and  sum terms from individual residuals:








• What is the structure of these terms?

bk Hk

bk = b0
k +

t

∑
τ=0

Nτ

∑
i=1

bτ,i
k = (J0

k)⊤ Σ−1
0,ξr

0 (xk) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i
ry

τ,i (xk)

Hk = H0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k = (J0

k)⊤ Σ−1
0,ξ (J0

k) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i (Jτ,i
k )

J0
k Jacobian of pose prior

Jτ,i
k Jacobian of residuals for feature i in image τ
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Structure of the Bundle Adjustment Problem

Hk = H0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k = (J0

k)⊤ Σ−1
0,ξ (J0

k) +
t

∑
τ=0

Nτ

∑
i=1

(Jτ,i
k )

⊤
Σ−1

yτ,i (Jτ,i
k )
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HkH0
k +

t

∑
τ=0

Nτ

∑
i=1

Hτ,i
k …

Σ−1
0,ξ

Σ−1
yτ,i

r0(xk)

ry
τ,i(xk)

ξ0 ξt m1 mS
J0

k

ξτ mcτ,i

Jτ,i
k

Diagonal, typically S ≫ t

Sparse!



Example Hessian of a BA Problem
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Lourakis et al., 2009

Landmark dimensions

(982 landmarks)

Pose dimensions

(10 poses)

Large, but sparse!


How to invert efficiently?

Hk =



Exploiting the Sparse Structure

• Idea:

Apply the Schur complement to solve the system in a partitioned way


	 	 	 








• Is this any better?

HkΔx = − bk (
Hξξ Hξm

Hmξ Hmm) (
Δxξ

Δxm) = − (
bξ

bm)

Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)

Δxm = − H−1
mm (bm + HmξΔxξ)
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Exploiting the Sparse Structure
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Δxξ = − (Hξξ − HξmH−1
mmHmξ)

−1

(bξ − HξmH−1
mmbm)

bξ=

Hξmj
H−1

mjmj
bmj

Hξmj
H−1

mjmj
Hmjξ

−
S

∑
j=1

Hξξ −
S

∑
j=1

=



Effect of Loop Closures on the Hessian
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Iii

Band matrix

Full Hessian

Reduced pose Hessian

Before loop closure

ξ3

ξ2

ξ1

ξ0

m3

m2

m0

m1



Effect of Loop Closures on the Hessian
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No band matrix: costlier to solve

Full Hessian

Reduced pose Hessian

After loop closure

ξ3

ξ2

ξ1

ξ0

m4

m3

m1

m2

Iii



Further Considerations

Many methods to improve convergence / robustness / run-time efficiency, e.g.


• Use matrix decompositions (e.g. Cholesky) to perform inversions

• Levenberg-Marquardt optimization improves basin of convergence

• Heavier-tail distributions / robust norms on the residuals can be implemented using iteratively 

reweighted least squares

• Preconditioning

• Hierarchical optimization

• Variable reordering

• Delayed relinearization
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Triangulation

• Find landmark position given the camera poses

• Ideally, the rays should intersect

• In practice, many sources of error: pose estimates, feature detections and camera model / 

intrinsic parameters
20
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Triangulation
• Goal: Reconstruct 3D point  from 2D image observations  for 

known camera poses 


• Linear solution: Find 3D point such that reprojections equal its projection


− For each image , let	 	 	 and


− Projecting  yields


− Requiring  gives two linear equations per image:


− Leads to system of linear equations , two approaches to solve:

− Set  and solve non-homogeneous least squares problem

− Find nullspace of  using SVD, then scale such that 


• Non-linear least squares on reprojection errors (more accurate):


• Different solutions for different methods in the presence of noise

x̃ = (x, y, z, w)⊤ ∈ ℙ3 {y1, …, yN}
{T1, …, TN}

i

x̃

y′￼i = yi

Ax̃ = 0
w = 1

A w = 1
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y′￼i = π (Tix̃) = (p1x̃ /p3x̃
p2x̃ /p3x̃)

p1x̃ = up3x̃
p2x̃ = vp3x̃

yi = (u
v)

min
x {

N

∑
i=1

∥yi − y′￼i∥2
2}

Ti =

p1
p2
p3

0 0 0 1



Exercises

Exercise sheet 4

• Implement components of SfM pipeline

• BA: Ceres can do the Schur complement

• Triangulation: use OpenGV’s triangulate function


Exercise sheet 5

• Implement components of odometry

• Similar to sheet 4, but:

− More efficient 2D-3D matching using approximate pose of previous frame

− New keyframe if number of matches too small

− New landmarks by triangulation from stereo pair

− Keep runtime bounded by removing old keyframes
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ceres::Solver::Options ceres_options;
ceres_options.max_num_iterations = 20;
ceres_options.linear_solver_type = 
ceres::SPARSE_SCHUR;
ceres_options.num_threads = 8;
ceres::Solver::Summary summary;
Solve(ceres_options, &problem, 
&summary);
std::cout << summary.FullReport() << 
std::endl;

Next slide



Summary

SfM

• Estimate map and camera poses from set of images

• SLAM: Sequential data, real-time

• Odometry: No global mapping


Bundle Adjustment

• Non-linear least squares problem

• Sparse structure of Hessian can be exploited for efficient inversion


Triangulation

• Linear and non-linear algorithms

• Differences in the presence of noise
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