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Recap of Graph Neural Networks (GNNS)

State-of-the-art performance in various fields
A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label
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Recap of Graph Neural Networks (GNNS)
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State-of-the-art performance in various fields
A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label { @ } { j J
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Recap of Graph Neural Networks (GNNS)
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State-of-the-art performance in various fields

A GNN maps a graph to a vector: Pooling

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label [

Q =—h
-

- Aggregate all node labels to a vector in final layer

B
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How powerful are GNNs?

How powerful can GNNs theoretically be?

What properties determine the expressiveness of a GNN?
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How powerful can GNNs theoretically be?
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How powerful can GNNSs theoretically be?

Can GNNs solve the graph isomorphism problem?
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Graph Isomorphism Problem

No algorithm with polynomial runtime known

If GNNs could distinguish all graphs, then we would have a polynomial solution!
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Weisfeiler-Lenman (WL) Test

Classical isomorphism test based on labels

Powerful but not capable to distinguish all graphs
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WL Test
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WL Test
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WL Test
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WL Test

G T=0 T=1 T=2
1:{B} L1{{G}L{B}} 1:{{{B}.{B}{B}},
2{G} 2:{{B}L{B}L{B}} {{B}{G}{B}}}
3:{B}  3:{{B}L{G}{B} 2 ..

e e 44B}  4:{{G}{B}

Vincent Limbach | How powerful are Graph Neural Networks? 17



Can GNNs be as powerful as WL?

Aggregate x

{G}{B}} meeesssssss——) (X}
{{B},{B},{B}}; {v}
{{B}{G}.{B}}
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Can GNNSs be as powerful as WL?
Aggregate

{G}{B}} e————

{{B}.{B},{B}} n———)

{B}.{G}.{(B}) m——)
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Universal Approximation Theory

Universal approximation theorem

An MLP with a linear output layer and one hidden layer can approx-
imate any continuous function defined over a closed and bounded
subset of R”, under mild assumptions on the activation function
('squashing’ activation functions; e.g. sigmoid) and given the num-

ber of hidden units is large enough.
[Cybenke 1989; Funahashi 1989; Hornik et al 1989, 1991; Hartman et al 1990].
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Universal Approximation Theory

(x)
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TUTI

W hat properties determine the expressiveness of a GNN?

Input sum - multiset mean - distribution max - set

> - >
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TUTI

W hat properties determine the expressiveness of a GNN?
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(a) Mean and Max both fail (b) Max fails (c) Mean and Max both fail
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Emperical Verification

Training accuracy

Training accuracy

Training accuracy
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WL kernel and GNN variants

WL subtree kernel
—— Sum -- MLP (GIN-0)
Sum -- MLP (GIN-eps)
Sum -- 1-layer

Mean -- MLP
Mean -- 1-layer (GCN)
~——— Max -- MLP

Max -- 1-layer (GraphSAGE)
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How should we address these limitations?

G Expand and modify GNN architecture

e Design and test different architectures
e Increase label information
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Summary

GNNSs can be as powerful as WL Test

The information lost by transformations and ag-
gregations determines the capabilities of a GNN

Non-injective transformations and aggregations
lead to decreased performance
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Do you have any questions?
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Thank you for your attention
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