

How powerful are Graph Neural Networks?

Vincent Limbach

Technical University of Munich

TUM School of Computation, Information and Technology

Computer Vision Group

Garching, 09. October 2023

State-of-the-art performance in various fields

State-of-the-art performance in various fields

State-of-the-art performance in various fields

A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)

State-of-the-art performance in various fields

A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label

State-of-the-art performance in various fields

A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label

State-of-the-art performance in various fields

A GNN maps a graph to a vector:

- Embed information in numerical vectors (labels)
- Aggregate neighbouring labels for new label
- Aggregate all node labels to a vector in final layer

How powerful are GNNs?

How powerful can GNNs theoretically be?

What properties determine the expressiveness of a GNN?

How powerful can GNNs theoretically be?

How powerful can GNNs theoretically be?

Can GNNs solve the graph isomorphism problem?

Graph Isomorphism Problem

No algorithm with polynomial runtime known

If GNNs could distinguish all graphs, then we would have a polynomial solution!

Weisfeiler-Lehman (WL) Test

Classical isomorphism test based on labels

Powerful but not capable to distinguish all graphs

T = 0	T = 1
1:{B}	1:{{G},{B}}
2:{G}	2:{{B},{B},{B}}
3:{B}	3:{{B},{G},{B}}
4:{B}	4:{{G},{B}}

T = 0	T = 1	T = 2
1:{B}	1:{{G},{B}}	1:{{{B},{B},{B}},
2:{G}	2:{{B},{B},{B}}	$\{\{B\}, \{G\}, \{B\}\}\}$
3:{B}	$3:\{\{B\},\{G\},\{B\}\}$	2:
4:{B}	4:{{G},{B}}	

Can GNNs be as powerful as WL?

Can GNNs be as powerful as WL?

Universal Approximation Theory

Universal approximation theorem

An MLP with a linear output layer and one hidden layer can approximate any continuous function defined over a closed and bounded subset of \mathbb{R}^D , under mild assumptions on the activation function ('squashing' activation functions; e.g. sigmoid) and given the number of hidden units is large enough.

[Cybenko 1989; Funahashi 1989; Hornik et al 1989, 1991; Hartman et al 1990].

Universal Approximation Theory

What properties determine the expressiveness of a GNN?

What properties determine the expressiveness of a GNN?

Emperical Verification

How should we address these limitations?

Expand and modify GNN architecture

Design and test different architectures

Increase label information

Vincent Limbach | How powerful are Graph Neural Networks?

2

E.

GNNs can be as powerful as WLTest

2 The information lost by transformations and aggregations determines the capabilities of a GNN

Non-injective transformations and aggregations lead to decreased performance

Do you have any questions?

Thank you for your attention