

Seminar: 3D Shape Matching and Applications in Computer Vision

Preparation Meeting, 05.07.2024

Viktoria Ehm, Maolin Gao

Seminar: 3D Shape Matching

Seminar: 3D Shape Matching

Eisenberger et al

Seminar: 3D Shape Matching

Wonder Studio

Organisation

Block seminar: **08.01.-09.01.2025** (maximal 2 days)

Place: Hybrid, on campus & online (zoom link see tumonline)

Website: https://cvg.cit.tum.de/teaching/ws2024/3dsm

Email: <u>3dsm-ws24@vision.in.tum.de</u>

What you will learn

Get an overview on recent research in 3D Shape Matching and Applications in Computer Vision

Read and understand scientific publications

Prepare and give a talk

Write a scientific report

Preparation

- You do not need to (and should not) work on your topic alone
- Meet at least twice with your supervisor
- It is your responsibility to contact your supervisor for these meetings

Presentation

Recommended structure

- 1. Introduction of the problem
- 2. Approach
- 3. Results (if any)
- 4. Summary

- 30 minutes talk + 15 minutes discussion
- use visualizations
- number your slides
- do not make slides full of text
- explain things you had problems understanding when first reading your paper in more detail
- reference the original author and conference/journal name

Report

- The report is due 2 weeks after the talk and gives you the chance to **make up for questions that were left**
- Address the open questions left from the Q&A session.
- Not a copy of your assigned material, focus on parts that you found interesting or concepts you had to do additional work to understand
- 6-10 pages
- Use CVPR Latex template: <u>https://media.icml.cc/Conferences/CVPR2023/cvpr2023-author_kit-v1_1-1.zip</u>
- Use your text editor of choice if you must but keep the style similar to the template

Evaluation Criteria

- Attendance on the block seminar day is necessary!
 Contact us **beforehand** if you have other appointments.
- Participation (questions, discussions) influences the final grade.
- Final grade will be a weighted combination of your presentation, participation and report.

General Tips

- Choose the main aspects and interesting subtopics
- Understand them in every detail
- It may be necessary to check related articles or textbooks
- Prepare the topic such that it is understandable to the other participants of the seminar

Data Structure

1. DiffusionNet: Discretization Agnostic Learning on Surfaces

Sharp et al. 2022

2. Point Clouds Registration Via Efficient Convex Relaxation

Haggai et al. 2016

3. Unsupervised Learning of Robust Spectral Shape Matching

Cao et al. 2023

4. Dense Elastic 3D Shape Matching

Schmidt et al. 2014

Registration

- Computer Science & exchange students apply through the TUM Matching platform (matching.in.tum.de)
- There are 12 places in total
- Everyone present at the premeeting gets priority in the matching system, please post your **name, TUM-Kennung and email in the chat in one message**

Assignment of Topics

- A list of topics will be available on the homepage in the upcoming weeks
- https://cvg.cit.tum.de/teaching/ws2024/3dsm
- If you got assigned to this seminar, send us an email to <u>3dsm-ws24@vision.in.tum.de</u> with your **four** favorite topics
- Topics will be assigned by first come first serve

Questions?

