Learning all the text in the internet is easy for your network?

Try learning the weather on earth

09/11/2024

Aurora: A Foundation Model of the Atmosphere

Frederic Findeis Deep Learning for Natural Sciences Lecturer: Karnik Ram Date: November 12th, 2024

09/11/2024

Structure of the talk

- Introduction
- Data
- Architecture
- Training
- 2 Test Cases
- Conclusion

Weather and Climate

Weather:

- specific point of time
- the state of the atmosphere
- certain location

Climate:

• Average weather over time

[ButterflyImage]

Complex physical system with lots of diverse data

Types of weather forecast

- Different tasks
- Different variables
- Different resolution 0.1 ° (around 11 km)

[AuroraYoutubeVideo]

Initial situation

- Current state: Forecast by numerical weather prediction
 - Only parts of available data used
 - Costly
 - Long prediction times
 - Must be rerun, whenever new data gets in
- → Deep Learning:

great results with plenty training data

[ObjectDetection]

[Protein]

6

Goal of Aurora Project

- Produce **operational forecasts** in short time
- outperform:
 - state of the art simulation tools
 - specialized deep learning models
 - In scenarios with limited data

Why possible: Foundation Model, trained on diverse data

Repetition: Foundation Model

Classic DL Model

Dataset Types

- Forecasts: prediction of weather
- Analysis Data: measurements
- Reanalysis Data: historic observations with fixed models
- ➔ reconstruction past conditions
- **Reforecasts:** reanalysis as initial condition (true forecast)
- → calibrate current models
- Climate Simulation: model to predict response of climate system for different scenarios

Most important datasets

- ECMWF = European Centre for Medium-Range Weather Forecasts
 - HRES High Resolution
 - ERA5 reanalysis
 - CAMS = Copernicus Atmosphere Monitoring Service
- NCEP = U. S. National Centers for Environmental Prediction
 - GFS (Global Forecast System)

09/11/2024

Pretraining – Mixture 6 weather and climate datasets

Divoraa data:	Pretraining Datasets							
	Name	Resolution	Timeframe	Surface Variables	Atmospheric Variables	Num levels	Size (TB)	Num
 Resolution 				variables	variables			
 Different times 	ERA5	$0.25^{\circ} imes 0.25^{\circ}$	1979-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	105.43	367,920
Binorone antoo	HRES-0.25	$0.25^{\circ} \times 0.25^{\circ}$	2016-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	42.88	149,650
 Variables 	IFS-ENS-0.25	$0.25^{\circ} \times 0.25^{\circ}$	2018-2020	2T, U10, V10, MSL	U, V, T, Q, Z	3	518.41	6,570,000
	GFS Forecast	$0.25^{\circ} \times 0.25^{\circ}$	2015-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	130.39	560,640
Pressure levels	GFS Analysis	$0.25^{\circ} \times 0.25^{\circ}$	2015-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	2.04	8,760
	GEFS Reforecast	$0.25^{\circ} \times 0.25^{\circ}$	2000-2019	2T, MSL	U, V, T, Q, Z	3	194.02	2,920,000
	CMCC-CM2-VHR4	$0.25^{\circ} imes 0.25^{\circ}$	1950-2014	2T, U10, V10, MSL	U, V, T, Q	7	12.6	94,900
 Big data 	ECMWF-IFS-HR	$0.45^\circ imes 0.45^\circ$	1950-2014	2T, U10, V10, MSL	U, V, T, Q	7	3.89	94,900
	MERRA-2	$0.625^{\circ} \times 0.5^{\circ}$	1980-2020	2T, U10, V10, MSL	U, V, T, Q	13	5.85	125,560
	IFS-ENS-Mean	$0.25^{\circ} \times 0.25^{\circ}$	2018-2020	2T, U10, V10, MSL	U, V, T, Q, Z	3	10.37	131,400
	[AuroraPaper]					Total	1,219.91	11,023,730

BUT: ALSO INCOMPLETE DATA

Split

Pretraining Validate with IFS HRES at 0.25° from 2020

Test Years 2022 / 2023 Depending on dataset

Finetune

Name	Timeframe		
ERA5	1979-2020		
HRES-0.25	2016-2020		
IFS-ENS-0.25	2018-2020		
GFS Forecast	2015-2020		
GFS Analysis	2015-2020		
GEFS Reforecast	2000-2019		
CMCC-CM2-VHR4	1950-2014		
ECMWF-IFS-HR	1950-2014		
MERRA-2	1980-2020		
IFS-ENS-Mean	2018-2020		

Name	Timeframe	Name	Timeframe		
HRES-0.25	2022	HRES-0.25	2016 - 2021		
HRES-0.1	2023	HRES-0.1	2016 – 2022		
CAMS Analysis June 2022 - Nov 2022	June 2022 –	CAMSRA	2003 – 2021		
	Nov 2022	CAMS Analysis	Oct 2017 –		

09/11/2024

Frederic Findeis - Aurora

May 2022

Problem statement

- Observed state of atmosphere X^t at time t: $X^t = V \times H \times W$
- Discretization of time t
- V number of variables
- V can be split in V_S (surface) and V_A (atmosphere)
- *H*, *W* number of latitude/longitude coordinates
- Goal:
 - Φ : $(X^{t-1}, X^t) \rightarrow \hat{X}^{t+1}$
 - Recursively for future

Architecture

• Image processing – not graph

3D Perceiver Encoder (1)

• All variables as $H \times W$ images at time t and t - 1

Input Atmospheric Variables

- Static variabel (from ERA5):
 - (1) geopotential at the surface
 - (2) land-sea mask
 - (3) soil-type mask

Input Surface Variables

09/11/2024

3D Perceiver Encoder (2)

• Level Embeddings:

- Split $H \times W$ images in $P \times P$ patches
- Map patches at each level into Input Atmospheric Variables vectors \mathbb{R}^{D} via linear layer
- $V_S \times T \times P \times P \rightarrow 1 \times D$
- Tag vector with level encoding
- Stack levels

(simplified version)

09/11/2024

3D Perceiver Encoder (3)

• Level aggregation

3D Perceiver Encoder (4)

• Further aggregation for full backbone input tensor

09/11/2024

Backbone

- En/Decoder with 3 stages each halving/doubling the resolution
- Each layer: 3D Swin Transformer layer
 - Dot production attention, attention shift between layers

3D Perceiver Decoder

- Output of encoder backbone input
- Mirror of encoder

09/11/2024

Training stages

- Pretraining
 - (1) pretraining,
- Fine tuning
 - (2) short lead-time fine-tuning of pretrained weights
 - (3) long lead-time (rollout) fine-tuning

Pretraining

- Give network snapshot time t
- Get prediction on time t + 1 compare
- ➔ Minimise Loss
- 2-3 week on 32 a100 GPUs

Data: diverse big data

Finetuning

- Short lead-time fine tuning:
 - Minimise loss
- Rollout Fine Tuning
 - LoRA (Low Rank Adaptation)
 - Adapt Backbone weights
 5 days on 8 a100 GPUs

Data: limited and sparse

Loss – Mean absolute error

- Training objective $\mathcal{L}(\hat{X}^t, X^t)$
- Predicted state $\hat{X}^t = (\hat{S}^t, \hat{A}^t)$
- Ground truth state $X^t = (S^t, A^t)$
- Weight associated with surface-level variable $k: w_k^S$
- Weight atmospheric variable k at pressure level c: $w_{k,c}^A$
- α, β, γ predefined weights

$$\mathcal{L}(\hat{X}^t, X^t) = \frac{\gamma}{V_S + V_A} \left[\alpha \left(\sum_{k=1}^{V_S} \frac{w_k^S}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} |\hat{S}_{k,i,j}^t - S_{k,i,j}^t| \right) + \beta \left(\sum_{k=1}^{V_A} \frac{1}{C \times H \times W} \sum_{c=1}^{C} w_{k,c}^A \sum_{i=1}^{H} \sum_{j=1}^{W} |\hat{A}_{k,c,i,j}^t - A_{k,c,i,j}^t| \right) \right]$$

09/11/2024

Validation

• Latitude weighting

 $w(i) = \frac{\cos(lat(i))}{\frac{1}{H}\sum_{i'=1}^{H}\cos(lat(i'))}$

09/11/2024

RMSE

• Measure error between predicitons and "ground truth"

$$\text{RMSE} = \frac{1}{T} \sum_{t=1}^{T} \sqrt{\frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} w(i) (\hat{X}_{i,j}^{t} - X_{i,j}^{t})^{2}},$$

- *t* sample datasets
- *i*, *j* index or latitude and longitude of each image
- w(i) weighing factor

Low Rank Adaptation

• Knowledge:

over-parametrized model have low intrinsic dimension [LoRA]

- Advantages:
 - easy switching between models
 - Efficient since no gradients required
 - No inference latency in deployment

09/11/2024

Low Rank Adaptation: How it works

- W_0 is initial weight (~ full rank) $W_0 \in \mathbb{R}^{d \times k}$, W_0 is frozen
- Initialisation: random Gaussian A, zero for B
- Constraint Update:
 - $W_0 + \Delta W = W_0 + BA$,
 - With $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, rank $r \ll \min(d, k)$
- New Forward pass
- $h = W_0 x + \Delta W x = W_0 x + B A x = (W_0 + B A) x$

Scenario 1: Fast prediction of atmospheric chemistry and air pollution

- Meteorological variables, air pollution concentration values with
 - Air pollution strongly depended to anthropogenic factors (COVID)

09/11/2024

Fast prediction of atmospheric chemistry and air pollution

- Finetuning data
 - CAMS analysis data
 - Very scarce and Non-stationary
 - Large dynamic range
 - Highly heterogeneous often extremely sparse and skewed

Setup differences

CAMS

- Emissions data as input
 - Natural factors (wildfires, vegetation etc.)
 - Anthropogenic factors (vehicle combustion, energy production)

Aurora

- No emissions data as input except
- Static variable fixed across all times and experiments

→learning implicitly from historical data which is affected by natural and anthropogenic factors

Results b

09/11/2024

Frederic Findeis - Aurora

Results c

Summary of results

- Aurora competitive with CAMS (within 20 % RMSE) on 94 % of targets
- Match or outperform on 74 % of all targets
- Problem low atmosphere, due to anthropogenic factors which are not accounted in Aurora

Skillful operational weather forecasting at 0.1° resolution (11km)

Skillful operational weather forecasting at 0.1° resolution (11km)

- IFS-HRES comparison (state-of-the art)
- Better results for long lead-times

Case Study: Strom Ciaran

- IFS-HRES comparison (state-of-the art)
- Better results overall

09/11/2024

Comparison Computation

IFS

 10-day forecast takes approximately 65 minutes on 352 high-end CPU nodes with 36 cores each

Aurora

- 1.1s per hour lead time on a single A100 GPU,
- → 4,4 minutes for 10-day forecast
- roughly a ×5,000 speedup over IFS

Diverse inputs

• More diversity on input data improved results

Model Scaling Pretraining

- Bigger models yield lower validation loss
- 5 % reduction in loss for every doubling of model

09/11/2024

Excurse: Graphcast Resolution: 0.25 °

Graphcast

- World Represented as Graph
- Trained on HRES and ERA5
- Single Task

[Graphcast]

Aurora

- World represented as images
- Trained on diverse data
- Multiple Tasks with Finetuning

Comparison to Graphcast

- Match or outperform at 94 % targets
- Biggest gains:
 - Upper atmosphere
 - High lead times

09/11/2024

Conclusion

- First time AI models beat NWP
- Only deterministic forecasts
 - → solution: ensemble of models
- No usage of local high-resolution datasets (only global datasets)
 - More potential
- Robustness and verification have to be improved to be used operational

Personal takeaway

- Huge progress in terms of replacing NWP
- Potential to provide high-res predictions faster
- Better results potential with better GPUs with more memory
- An enough big and complex model can capture everything

Further Information

Predecessor:

ClimaX: A foundation model for weather and climate

Try it out yourself:

• <u>GitHub - microsoft/aurora: Implementation of the Aurora model</u> for atmospheric forecasting

Sources

[Aurorapaper][2405.13063] Aurora: A Foundation Model of the Atmosphere

[ButterflyImage] Butterfly Storm Insect - Free photo on Pixabay

[auroraYoutubeVideo] <u>https://youtu.be/OqHICXcibrg?si=y9IoQWIloyzuUxia&t=664</u>

[objectDetection] <u>Object-detection-Real-world-applications-and-benefits.png (1500×1000)</u>

[Protein] https://frontlinegenomics.com/alphafold-2-protein-structure-prediction-software-for-all/

[AlFoundationModels] <u>https://assets.publishing.service.gov.uk/media/65081d3aa41cc300145612c0/Full_report_.pdf</u>

[ECMWFLogo]

https://th.bing.com/th/id/R.914f4a4d81996063cbfcde7f9c622dc3?rik=uw%2b4z%2bFNY%2bvN4g&riu=http%3a%2f%2fwww.ecmwf.int%2fsite s%2fdefault%2ffiles%2fECMWF_Master_Logo_RGB_nostrap.png&ehk=XrDRtwu3snQDAJxRu%2fq3J0%2fVQrixEaxFqvF8E7RHK9s%3d&risl=&pid =ImgRaw&r=0

[NWS] <u>https://th.bing.com/th/id/OIP.zDY1VZwJtBV5Fsr2KYrJtQHaHa?rs=1&pid=ImgDetMain</u>

[Atlas]Pin page

[Climax]2301.10343

[LoRA] <u>https://www.semanticscholar.org/paper/LoRA%3A-Low-Rank-Adaptation-of-Large-Language-Models-Hu-Shen/a8ca46b171467ceb2d7652fbfb67fe701ad86092</u>

[Graphcast] [2212.12794] GraphCast: Learning skillful medium-range global weather forecasting