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computer chips climate change batterychemistry solar power

all of these technologies rely on crystals



1. Motivation

2. Material discovery before GNoME

3. ML basics for GNoME

4. Material discovery with GNoME

5. Evaluation

Agenda
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Na

Cl

unique elements chemical stochiometry

𝑵𝒂𝑪𝒍

crystal structure

stability
𝐸𝑠𝑦𝑠𝑡𝑒𝑚 < 0 → stable

!

DFT



Assumptions:

1. Energy of system depends solely on electron density 𝜌(𝑟)

2. The basic state of 𝜌(𝑟) minimizes the energy of the system < = >  𝝆𝒃𝒂𝒔𝒊𝒄 𝒓 =  𝒂𝒓𝒈𝐦𝐢𝐧
𝝆

𝑬(𝝆)

Energy is calculated as follows:

𝐸 𝜌 = 𝑇 𝜌 + 𝑉𝑒𝑥𝑡 𝜌 + 𝐽 𝜌 + 𝑬𝒙𝒄(𝝆)

𝑬𝒙𝒄 𝝆 : exchange-correlation functional that describes quantum mechanical effects → approximated

+    DFT is an exact and efficient approach to calculate the stability of a crystal

- quality highly depends on good approximation of 𝑬𝒙𝒄(𝝆)

Density Functional Theory (DFT)
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• currently mostly trial-and-error → depends on human chemical intuition

• experimental approaches catalogued 20,000 computationally stable 

crystals in Inorganic Crystal Structure Database (ICSD)

• computational approaches lead to 48,000 computationally stable crystals

• ML techniques tried but ineffective in estimating stability

→ current approaches are either inefficient or ineffective

Current Approaches
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→ GNoME (graph network for material exploration) is the solution!



• consists of graphs → just like crystals

• performs message passing

• has an attention mechanism

What is a graph neural network (GNN)?
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• consists of graphs → just like crystals

• performs message passing

• has an attention mechanism

What is a graph neural network (GNN)?
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Figure: machinelearningknowledge.ai

https://machinelearningknowledge.ai/graph-neural-networks-gnn-explained-for-beginners/?utm_content=cmp-true


Active learning vs passive learning
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➢ amount of training data rises over time

→ active learning vs passive learning comparable to lecture vs seminar



Active learning vs passive learning

16Jannis Steiger | Deep Learning for Natural Sciences | 10.12.2024

unlabeled data discriminator learner

labelprovide

classify

active learning

generate

query label for unclear data

• in active learning learner queries discriminator for new labels

➢ amount of training data rises over time

→ active learning vs passive learning comparable to lecture vs seminar



The GNoME framework

17Jannis Steiger | Deep Learning for Natural Sciences | 10.12.2024

Figure: Merchant2023



The GNoME framework
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Figure: Merchant2023



GNoME Database
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Based on Experiments

Inorganic Crystal Structure Database (ICSD)

• experimentally determined stable 

materials

• ~20.000 stable crystal structures

Based on Calculations

DFT

𝑁𝑎𝐶𝑙

?
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Based on Calculations
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Materials Project (~100k materials)

electrical properties

mechanical properties stability

OQMD (~1M materials)

electrical properties
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stability

thermal properties

AFLOW (~3M materials)

electrical properties

thermodynamical properties (stability)

mechanical properties

NOMAD (~100M materials)

combination of uploaded simulations (DFT, 

Molecular Dynamics, Monte Carlo)
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Materials Project (~100k materials)

electrical properties

mechanical properties stability

OQMD (~1M materials)

electrical properties
thermodynamical properties

stability

thermal properties

AFLOW (~3M materials)

electrical properties

thermodynamical properties (stability)

mechanical properties

NOMAD (~100M materials)

combination of uploaded simulations (DFT, 

Molecular Dynamics, Monte Carlo)

→ combined to database of  

48.000 stable materials



Assumptions:

1. Energy of system depends solely on electron density 𝜌(𝑟)

2. The basic state of 𝜌(𝑟) minimizes the energy of the system < = >  𝝆𝒃𝒂𝒔𝒊𝒄 𝒓 =  𝒂𝒓𝒈𝐦𝐢𝐧
𝝆

𝑬(𝝆)

Energy is calculated as follows:

𝐸 𝜌 = 𝑇 𝜌 + 𝑉𝑒𝑥𝑡 𝜌 + 𝐽 𝜌 + 𝑬𝒙𝒄(𝝆)

𝑬𝒙𝒄 𝝆 : exchange-correlation functional that describes quantum mechanical effects → approximated

+    DFT is an exact and efficient approach to calculate the stability of a crystal

- quality highly depends on good approximation of 𝑬𝒙𝒄(𝝆)

GNoME uses the Vienna Ab initio Simulation Package (VASP) to calculate the DFT

Density Functional Theory (DFT)
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The GNoME framework

24Jannis Steiger | Deep Learning for Natural Sciences | 10.12.2024

2.

1.

3.

Figure: Merchant2023



The GNoME framework

25Jannis Steiger | Deep Learning for Natural Sciences | 10.12.2024

Structural pipeline:

• known crystals as input

• augment known crystals

• predict stability

Compositional pipeline:

• predict stability by unstructured 

candidates

• ab initio random structure 

searching (AIRSS) creates 

structure candidates

Figure: Merchant2023
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The GNoME framework
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Figure: Merchant2023



• shallow multilayer perceptrons

→ only few message passing iterations

• messages normalized by average number of neighbors for an 

atom across the whole dataset

• swish nonlinearity

Message-passing in GNoME
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final training with whole data set → 𝑀𝐴𝐸 = 11𝑚𝑒𝑉/𝑎𝑡𝑜𝑚

Training process in GNoME
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trained on 69,000 materials from Materials Project, best architecture kept

→ 𝑀𝐴𝐸 = 20𝑚𝑒𝑉/𝑎𝑡𝑜𝑚 compared to 𝑀𝐴𝐸 = 28𝑚𝑒𝑉/𝑎𝑡𝑜𝑚 benchmark

scaling of lattice vectors from 0.8 to 1.2 augments test set

initial model

model training

model testing



Training process in GNoME
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initial model

model training

model testing

Is there a simple way to 

improve generalization?



Training process in GNoME
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initial model

model training

model testing

deep ensembles

…10x



• improved data from 48k computationally stable materials to 

2.2m computationally stable materials

➢ factor 4.5 ∗ 105 (!)

• especially performs on crystals where chemical intuition fails 

(5 or more unique element)

• can lead to better understanding (e.g. interatomic potentials)

→ GNoME revolutionized material science

Did GNoME enhance material discovery or revolutionize it?
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Figure: Merchant2023



Where did GNoME impact research already?
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DeAngeles2024*

➢ identify potential candidates for batteries

↯
Cheetham2024**

➢ GNoME has not made practical contributions to 

experimental material science

➢ many discovered materials are slight variations of 

known materials

➢ industry application still decades away

*DE ANGELIS, Paolo, et al. Energy-GNoME: A Living Database of Selected Materials for Energy Applications. arXiv preprint arXiv:2411.10125, 2024

**CHEETHAM, Anthony K.; SESHADRI, Ram. Artificial intelligence driving materials discovery? perspective on the article: Scaling deep learning for materials discovery. Chemistry of Materials, 2024, 36. Jg., Nr. 8, S. 3490-3495

Figure: Merchant2023



1. GNoME exponentially increased number of known stable crystals but 

many materials are slight variations of already known crystals

2. GNoME opens possibilities in many research areas (battery, chemistry, 

solar, chips…) but actual impact is to be evaluated

3. Contributed massive impact on understanding of material science; 

especially for complex crystals and interatomic potentials

Main takeaways
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Any questions..?
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Merchant2023: Scaling deep learning for materials discovery

DeAngeles2024: Energy-GNoME: A Living Database of Selected Materials for Energy Applications

Cheetham2024: Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for 

Materials Discovery

Hellenbrand2004: The Inorganic Crystal Structure Database (ICSD)—present and future

Jain2013: The Materials Project: a materials genome approach to accelerating materials innovation

Saal2013: Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials 

Database (OQMD)

Daxl2019: The NOMAD laboratory: from data sharing to artificial intelligence

Curtarolo2012: AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations

Graph Neural Networks (GNN) Explained for Beginners
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