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The AI + Science Landscape

● AI is transformational 
● Deep learning 

dominates current 
approaches

● Limited scientific 
understanding from AI 
systems

● Need for more transparent 
AI approaches

Current State Major Achievements Remaining Challenges

● AlphaFold: Near-perfect 
protein structure prediction

● AI Weather Forecasting: 
Beyond traditional 
accuracy



Application-driven Science (MLP) 

● What (is the output)?

● Works for well 

formulated problems  

with clear objectives 

● Less interpritible MLP 

models



Curiosity-driven Science 
(KAN)

● Why (is this the 
result)? 

● Scientific discoveries 
require mathematical 
understanding and clear 
principles

● KAN’s offer more 
interpretable structure 
through edge functions



Understanding 
KANs 
Theoretical introductions
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The Kolmogorov-Arnold Theorem

● States that any continuous function in a high-dimensional 
space can be represented as a finite composition of 
univariate continuous functions and additions.

● Example:
xy = exp(logx + logy)



Two-layer Network 

Key problem is has to be smooth functions 



Key Breakthrough

Generalizing the original Kolmogorov-Arnold representation, 
extending it to arbitrary depths



Basic KAN Architecture

● nodes 
(summation)

● edges (learnable 
activation 
functions)
○ B-Splines

● Symbolic 
regression gives 
output formula 



Comparison
MLPs:

● Universal representation 
theorem based 

● fixed nonlinear activation
● Each neuron processes 

weighted sum of inputs

KANs:

● Kolmogorov-Arnold 
representation based 

● Edge-based univariate 
transformations

● Node-wise signal summation



MultKAN

● Nodes(input) and 
subnodes(output)

● Standard KAN layer plus 
multiplication layer

● No additional trainable 
parameters 

● Learns multiplication 



Goal: 

Problem: symbolic formulas are not always possible 

Solution: 
1. Build in scientific knowledge to KANs (section 3)

2. Extract out scientific knowledge from KANs 
(section 4) 



Building Scientific 
Knowledge  
Knowledge Embedding
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Overview of embedding knowledge 

incorporate 
available inductive 
biases into KANs Adding Important 

Feature
Creating Modular 

Structures
Compiling 

Symbolic Formulas

KAN
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1. Adding important features to KANs

● Addition of auxiliary 
input variable 

● Adds expressive power 
and interpretability to the 
network 



Example



2. Modular structures

● Allows for extracting knowledge from clusters of 
neurons 

● KAN allows for explicit creation of modular 
structures.  

● Two types of modularity: 
1. Separability
2. Generalized Symmetry



Separability 

 f is separable if it can be expressed as a sum or product of 
functions of non-overlapping variable groups



Generalized symmetry

f(x1, x2, x3, · · ·) = g(h(x1, x2), x3, · · · 
)



3. Compiling Symbolic Formulas 

Combine expressivity of neural networks with symbolic explainable 
formulas 

Two steps: 
1. Compile formula into a KAN (introducing domain knowledge) 
2. Train KAN on data (learn “new physics”)



KANPILER + Learning
1. Parse Formula → Tree, Nodes = expressions, Edges = 

operations/functions
2. Transform Tree → KAN Structure Moves leaf nodes to input layer 
3. Create Final Graph by combining variables in first layer 



Extracting 
Knowledge   
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Overview of Knowledge Extraction

Identifying 
Important 
Features

Identifying 
Modular 

Structures

Identifying 
Symbolic 
Formulas

KAN
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1. Identifying Important Features

● Assign scores to important inputs 
● Previously: L1 norm (only considers local 

information) 
○ El,i,j = standard deviation of the function on 

each edge
○ Nl,i = standard deviation at each node

● Update: Iterative computation of scores
○ node (attribution) score:  Al,i 
○  edge (attribution) score: Bl,i,j



Example



2. Identifying modular structures

1 2

anatomical modularity functional modularity



Anatomical Modularity

● Spatial proximity of 
neurons

● Autoswap: neuron 
swapping methods 
(preserves 
functionality) 

● Easy to visually 
identify modular 
structures 



Functional modularity



Functional Modularity: separability 

● Additively separable
● Compute the hessian 

matrix
● If Hij = 0 for all 1 ≤ i ≤ k 

and k + 1 ≤ j ≤ n then 
additively separable 

● For multiplicative 
separability, convert to 
additive separability by 
taking the log  



3. Identifying symbolic formulas 

Trick A: discover and leverage modular structures 



3. Identifying symbolic formulas 

Trick B: Sparse initialization — a more natural fit



3. Identifying symbolic formulas 

Trick C: Hypothesis testing - easy to try 
different ideas.



Real-World 
Applications
Application areas
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1. Discovering Lagrangians

● Core idea: Learn lagrangian from data 
- Phase space: position and velocity 

● Predict accelerations using Euler-Lagrange equations 

How KANs Help:

1. Numerical Stability:

• Pre-encode kinetic energy  

2. Interpretability:

• Symbolic regression extracts explicit formulas from KAN 
edges 



KAN solution

• Key Results:

• Stable Training: Fewer numerical 
errors.

• Explainable Models: Learns 
physics-aligned formulas.



2. Constitutive laws
• Constitutive Laws:

• Define material behavior under forces or deformation (e.g., Hooke’s Law).

• Linear for small deformations (Hooke’s law)

• Nonlinear for larger deformations (e.g., Neo-Hookean).

• Why Use KANs?

• predict the P (stress) tensor from the F (deformation) tensor

• Incorporates prior knowledge (e.g., linear laws).

• Extracts interpretable symbolic formulas via symbolic regression.



Results: 
With Prior Knowledge:

• The initial KAN is based on 
the linear constitutive law.

• Helps guide training but may 
converge to poor local minima 

• Without Prior Knowledge:

• Start with a randomly 
initialized KAN.

• Requires more data to train 
but avoids being biased 





Future 
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Software 



Outlook

● Scalability Challenge
○ Limited interpretability at large scales
○ Need better methods for managing complexity

● Key Research Areas
○ Advanced interpretability methods
○ Scaling to larger problems
○ Expansion beyond physics



KAN VS MLP

MLP:

● Lower interpribility 
● Well established and proven 

KAN:

● 10x Slower training time
● Higher interpretability
● Continual learning  
● More parameter efficient 
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1. Discovering conserved quantities

- Conserved quantities as differential equation solving 
-  z ∈ Rd governed by the equation dz/dt = f(z)
-  H(z) is a conserved quantity if f(z) · ∇H(z) = 0 for all Z 

Harmonic Oscillator

● System Description:
○ Phase space: z = (x, p)

■ x: position
■ p: momentum

● Evolution:
○ d(x,p)/dt = (p, -x)



Harmonic Oscillator
Energy Conservation:

● Energy function: H = ½(x² + p²)
● Phase space: z = (x, p)
● Conservation proof:

○ Force vector: f(z) = (p, -x)
○ Gradient of H: ∇H(z) = (x, p)
○ Dot product: f(z) · ∇H(z) = p·x + 

(-x)·p = 0
○ Zero result proves H is conserved

KAN: 

- Parametrize H into network 
- Train with loss function 


