KAN 2.0: Kolmogorov-Arnold Networks Meet Science

Deep Learning for the Natural Sciences

Jonathan Wheeler

Table of contents

1

Motivation

Current Landscape

The AI + Science Landscape

Ů

Current State

- Al is transformational
- Deep learning dominates current approaches

Major Achievements

- AlphaFold: Near-perfect protein structure prediction
- Al Weather Forecasting: Beyond traditional accuracy

Remaining Challenges

- Limited scientific understanding from AI systems
- Need for more transparent Al approaches

Application-driven Science (MLP)

- What (is the output)?
- Works for well

formulated problems with clear objectives

Less interpritible MLP
 models

Curiosity-driven Science (KAN)

- Why (is this the result)?
- Scientific discoveries require mathematical understanding and clear principles
- KAN's offer more
 interpretable structure
 through edge functions

2

Understanding KANs

Theoretical introductions

The Kolmogorov-Arnold Theorem

$$f(\mathbf{x}) = f(x_1, \cdots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

- States that any continuous function in a high-dimensional space can be represented as a finite composition of univariate continuous functions and additions.
- Example:

xy = exp(logx + logy)

Two-layer Network

$$f(\mathbf{x}) = f(x_1, \cdots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

Key problem is has to be smooth functions

Key Breakthrough

$$\mathbf{x}_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,2,1}(\cdot) & \cdots & \phi_{l,n_{l},1}(\cdot) \\ \phi_{l,1,2}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,n_{l},2}(\cdot) \\ \vdots & \vdots & & \vdots \\ \phi_{l,1,n_{l+1}}(\cdot) & \phi_{l,2,n_{l+1}}(\cdot) & \cdots & \phi_{l,n_{l},n_{l+1}}(\cdot) \end{pmatrix}}_{\mathbf{\Phi}_{l}} \mathbf{x}_{l}$$

Generalizing the original Kolmogorov-Arnold representation, extending it to arbitrary depths

$$f(\mathbf{x}) = \sum_{i_{L-1}=1}^{n_{L-1}} \phi_{L-1,i_{L},i_{L-1}} \left(\sum_{i_{L-2}=1}^{n_{L-2}} \cdots \left(\sum_{i_{2}=1}^{n_{2}} \phi_{2,i_{3},i_{2}} \left(\sum_{i_{1}=1}^{n_{1}} \phi_{1,i_{2},i_{1}} \left(\sum_{i_{0}=1}^{n_{0}} \phi_{0,i_{1},i_{0}}(x_{i_{0}}) \right) \right) \right) \cdots \right)$$

Basic KAN Architecture

- nodes
 (summation)
- edges (learnable activation functions)
 B-Splines
- Symbolic regression gives output formula

 $\phi(x)$

k = 3

Comparison

MLPs:

- Universal representation theorem based
- fixed nonlinear activation
- Each neuron processes weighted sum of inputs

KANs:

- Kolmogorov-Arnold representation based
- Edge-based univariate transformations
- Node-wise signal summation

 $\mathrm{KAN}(\mathbf{x}) = (\mathbf{\Phi}_{L-1} \circ \mathbf{\Phi}_{L-2} \circ \cdots \circ \mathbf{\Phi}_1 \circ \mathbf{\Phi}_0)\mathbf{x}.$

MultKAN

- Nodes(input) and subnodes(output)
- Standard KAN layer plus multiplication layer
- No additional trainable parameters
- Learns multiplication

 $\operatorname{MultKAN}(\mathbf{x}) = (\Psi_L \circ \Psi_{L-1} \circ \cdots \circ \Psi_1 \circ \Psi_0) \mathbf{x}.$

Problem: symbolic formulas are not always possible

Solution:

- 1. Build in scientific knowledge to KANs (section 3)
- 2. Extract out scientific knowledge from KANs (section 4)

3

Building Scientific Knowledge

Knowledge Embedding

Overview of embedding knowledge

incorporate available inductive biases into KANs

KAN

1. Adding important features to KANs

$$y = f(x_1, x_2, \cdots, x_n)$$

- Addition of auxiliary input variable
- Adds expressive power and interpretability to the network

$$a = a(x_1, x_2, \dots, x_n)$$

 $y = f(x_1, \cdots, x_n, a)$

2. Modular structures

- Allows for extracting knowledge from clusters of neurons
- KAN allows for explicit creation of modular structures.
- Two types of modularity:
 - 1. Separability
 - 2. Generalized Symmetry

start_layer_id, '[nodes_id]->[subnodes_id]->[nodes_id]...'

Generalized symmetry

$$f(x_{1}, x_{2}, x_{3}, \cdots) = g(h(x_{1}, x_{2}), x_{3}, \cdots)$$

0, '[0,1]->[0,1]->[0,1]->[0]'

3. Compiling Symbolic Formulas

Combine expressivity of neural networks with symbolic explainable formulas

Two steps:

- 1. Compile formula into a KAN (introducing domain knowledge)
- 2. Train KAN on data (learn "new physics")

KANPILER + Learning

- Parse Formula → Tree, Nodes = expressions, Edges = operations/functions
- 2. Transform Tree \rightarrow KAN Structure Moves leaf nodes to input layer
- 3. Create Final Graph by combining variables in first layer

Extracting Knowledge

Overview of Knowledge Extraction

1. Identifying Important Features

- Assign scores to important inputs
- Previously: L1 norm (only considers local information)
 - $E_{I,i,j}$ = standard deviation of the function on each edge
 - N_{II} = standard deviation at each node
- Update: Iterative computation of scores
 - node (attribution) score: A_{II}
 - edge (attribution) score: $B_{l,i,j}$

$$B_{l-1,i,j} = A_{l,j} \frac{E_{l,j}}{N_{l+1,j}}, \quad A_{l-1,i} = \sum_{j=0}^{n_l} B_{l-1,i,j}, \quad l = L, L-1, \cdots, 1.$$

Example

2. Identifying modular structures

anatomical modularity

functional modularity

Anatomical Modularity

- Spatial proximity of neurons
- Autoswap: neuron swapping methods (preserves functionality)
- Easy to visually identify modular structures

Functional Modularity: separability

Additively separable ~

- Compute the hessian matrix
- If $H_{ii} = 0$ for all $1 \le i \le k$ and $k + 1 \le j \le n$ then additively separable
- For multiplicative separability, convert to additive separability by taking the log

$$f(x_1, x_2, \cdots x_n) = g(x_1, \dots, x_k) + h(x_{k+1}, \dots, x_n)$$

 $f(\mathbf{H} \equiv \nabla^T \nabla f(\mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j})$

$$\log |f(x_1, x_2, \cdots, x_n)| = \log |g(x_1, \dots, x_k)| + \log |h(x_{k+1}, \dots, x_n)|$$

$$\mathbf{H}_{ij} \equiv rac{\partial^2 \mathrm{log} |f|}{\partial x_i \partial x_j}$$

3. Identifying symbolic formulas

Trick A: discover and leverage modular structures

3. Identifying symbolic formulas

Trick B: Sparse initialization — a more natural fit

3. Identifying symbolic formulas

Trick C: Hypothesis testing - easy to try different ideas.

5

Real-World Applications Application areas

1. Discovering Lagrangians

- Core idea: Learn lagrangian from data
 - Phase space: position and velocity
- Predict accelerations using Euler-Lagrange equations

How KANs Help:

- 1. Numerical Stability:
 - Pre-encode kinetic energy
- 2. Interpretability:

$$\begin{split} \mathbf{L}(\mathbf{q}, \dot{q}) &= T - V from(q, \dot{q}, \ddot{q}) \\ \ddot{q} &= (\nabla_{\dot{q}} \nabla_{\dot{q}}^T L)^{-1} \left[\nabla_q L - \nabla_q \nabla_{\dot{q}}^T \dot{q} \right] \end{split}$$

• Symbolic regression extracts explicit formulas from KAN edges

KAN solution

- Key Results:
 - **Stable Training**: Fewer numerical errors.
 - Explainable Models: Learns physics-aligned formulas.

2. Constitutive laws

- Constitutive Laws:
 - Define material behavior under forces or deformation (e.g., Hooke's Law).
 - Linear for small deformations (Hooke's law) —
 - Nonlinear for larger deformations (e.g., Neo-Hookean).
- Why Use KANs?

$$-P_{12} = \mu(F_{11}F_{21} + F_{12}F_{22} + F_{13}F_{23})$$

 $^{-}P_{12} = \mu(F_{12} + F_{21})$

- predict the P (stress) tensor from the F (deformation) tensor
- Incorporates prior knowledge (e.g., linear laws).
- Extracts interpretable symbolic formulas via symbolic regression.

Results:

With Prior Knowledge:

- The initial KAN is based on the linear constitutive law.
- Helps guide training but may converge to poor local minima
- Without Prior Knowledge:
 - Start with a randomly initialized KAN.
 - Requires more data to train but avoids being biased

 $P_{12} = \mu(F_{12} + F_{21})$

 $P_{12} = \mu(F_{11}F_{21} + F_{12}F_{22} + F_{13}F_{23})$

 $P_{11} = 0.42(F_{11}^2 + F_{12}^2 + F_{13}^2 - 1) + 0.28\log(|F|)$

Future

Software

(b) "software version"-scale plane

Outlook

• Scalability Challenge

- Limited interpretability at large scales
- Need better methods for managing complexity

• Key Research Areas

- Advanced interpretability methods
- Scaling to larger problems
- Expansion beyond physics

KAN VS MLP

MLP:

- Lower interpribility
- Well established and proven

KAN:

- 10x Slower training time
- Higher interpretability
- Continual learning
- More parameter efficient

References

1. Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou, and M. Tegmark, "KAN: Kolmogorov-Arnold Networks," *arXiv preprint*, arXiv:2404.19756, Jun. 2024. [Online]. Available: <u>https://doi.org/10.48550/arXiv.2404.19756</u>

2. Z. Liu, P. Ma, Y. Wang, W. Matusik, and M. Tegmark, "KAN 2.0: Kolmogorov-Arnold Networks meet science," *arXiv preprint*, arXiv:2408.10205, Aug. 2024. [Online]. Available: <u>https://doi.org/10.48550/arXiv.2408.10205</u>

$$\phi(x) = w_b b(x) + w_s \operatorname{spline}(x).$$

 $b(x) = \operatorname{silu}(x) = x/(1 + e^{-x})$
 $\operatorname{spline}(x) = \sum_i c_i B_i(x)$

1. Discovering conserved quantities

- Conserved quantities as differential equation solving
- $z \in R^d$ governed by the equation dz/dt = f(z)
- H(z) is a conserved quantity if $f(z) \cdot \nabla H(z) = 0$ for all Z

Harmonic Oscillator

- System Description:
 - Phase space: z = (x, p)
 - *x*: position
 - *p*: momentum
- Evolution:
 - $\circ \quad d(x,p)/dt = (p, -x)$

Harmonic Oscillator

Energy Conservation:

- Energy function: $H = \frac{1}{2}(x^2 + p^2)$
- Phase space: z = (x, p)
- Conservation proof:
 - Force vector: f(z) = (p, -x)
 - Gradient of *H*: $\nabla H(z) = (x, p)$
 - Dot product: $f(z) \cdot \nabla H(z) = p \cdot x + (-x) \cdot p = 0$
 - Zero result proves H is conserved

KAN:

- Parametrize *H* into network
- Train with loss function

