
KAN 2.0:
Kolmogorov-Arnold

Networks Meet Science
Deep Learning for the Natural Sciences

Jonathan Wheeler

Table of contents

Current Landscape Theoretical Introductions

01

0504

02

Knowledge Embedding

06

03

Motivation

Extracting Knowledge
from KANs

Real-World
Applications

What are KANs?

Future Directions

Building Scientific
Knowledge into KANs

Motivation
Current Landscape

1

The AI + Science Landscape

● AI is transformational
● Deep learning

dominates current
approaches

● Limited scientific
understanding from AI
systems

● Need for more transparent
AI approaches

Current State Major Achievements Remaining Challenges

● AlphaFold: Near-perfect
protein structure prediction

● AI Weather Forecasting:
Beyond traditional
accuracy

Application-driven Science (MLP)

● What (is the output)?

● Works for well

formulated problems

with clear objectives

● Less interpritible MLP

models

Curiosity-driven Science
(KAN)

● Why (is this the
result)?

● Scientific discoveries
require mathematical
understanding and clear
principles

● KAN’s offer more
interpretable structure
through edge functions

Understanding
KANs
Theoretical introductions

2

The Kolmogorov-Arnold Theorem

● States that any continuous function in a high-dimensional
space can be represented as a finite composition of
univariate continuous functions and additions.

● Example:
xy = exp(logx + logy)

Two-layer Network

Key problem is has to be smooth functions

Key Breakthrough

Generalizing the original Kolmogorov-Arnold representation,
extending it to arbitrary depths

Basic KAN Architecture

● nodes
(summation)

● edges (learnable
activation
functions)
○ B-Splines

● Symbolic
regression gives
output formula

Comparison
MLPs:

● Universal representation
theorem based

● fixed nonlinear activation
● Each neuron processes

weighted sum of inputs

KANs:

● Kolmogorov-Arnold
representation based

● Edge-based univariate
transformations

● Node-wise signal summation

MultKAN

● Nodes(input) and
subnodes(output)

● Standard KAN layer plus
multiplication layer

● No additional trainable
parameters

● Learns multiplication

Goal:

Problem: symbolic formulas are not always possible

Solution:
1. Build in scientific knowledge to KANs (section 3)

2. Extract out scientific knowledge from KANs
(section 4)

Building Scientific
Knowledge
Knowledge Embedding

3

Overview of embedding knowledge

incorporate
available inductive
biases into KANs Adding Important

Feature
Creating Modular

Structures
Compiling

Symbolic Formulas

KAN

01 02 03

1. Adding important features to KANs

● Addition of auxiliary
input variable

● Adds expressive power
and interpretability to the
network

Example

2. Modular structures

● Allows for extracting knowledge from clusters of
neurons

● KAN allows for explicit creation of modular
structures.

● Two types of modularity:
1. Separability
2. Generalized Symmetry

Separability

 f is separable if it can be expressed as a sum or product of
functions of non-overlapping variable groups

Generalized symmetry

f(x1, x2, x3, · · ·) = g(h(x1, x2), x3, · · ·
)

3. Compiling Symbolic Formulas

Combine expressivity of neural networks with symbolic explainable
formulas

Two steps:
1. Compile formula into a KAN (introducing domain knowledge)
2. Train KAN on data (learn “new physics”)

KANPILER + Learning
1. Parse Formula → Tree, Nodes = expressions, Edges =

operations/functions
2. Transform Tree → KAN Structure Moves leaf nodes to input layer
3. Create Final Graph by combining variables in first layer

Extracting
Knowledge

4

Overview of Knowledge Extraction

Identifying
Important
Features

Identifying
Modular

Structures

Identifying
Symbolic
Formulas

KAN

01 02 03

1. Identifying Important Features

● Assign scores to important inputs
● Previously: L1 norm (only considers local

information)
○ El,i,j = standard deviation of the function on

each edge
○ Nl,i = standard deviation at each node

● Update: Iterative computation of scores
○ node (attribution) score: Al,i
○ edge (attribution) score: Bl,i,j

Example

2. Identifying modular structures

1 2

anatomical modularity functional modularity

Anatomical Modularity

● Spatial proximity of
neurons

● Autoswap: neuron
swapping methods
(preserves
functionality)

● Easy to visually
identify modular
structures

Functional modularity

Functional Modularity: separability

● Additively separable
● Compute the hessian

matrix
● If Hij = 0 for all 1 ≤ i ≤ k

and k + 1 ≤ j ≤ n then
additively separable

● For multiplicative
separability, convert to
additive separability by
taking the log

3. Identifying symbolic formulas

Trick A: discover and leverage modular structures

3. Identifying symbolic formulas

Trick B: Sparse initialization — a more natural fit

3. Identifying symbolic formulas

Trick C: Hypothesis testing - easy to try
different ideas.

Real-World
Applications
Application areas

5

1. Discovering Lagrangians

● Core idea: Learn lagrangian from data
- Phase space: position and velocity

● Predict accelerations using Euler-Lagrange equations

How KANs Help:

1. Numerical Stability:

• Pre-encode kinetic energy

2. Interpretability:

• Symbolic regression extracts explicit formulas from KAN
edges

KAN solution

• Key Results:

• Stable Training: Fewer numerical
errors.

• Explainable Models: Learns
physics-aligned formulas.

2. Constitutive laws
• Constitutive Laws:

• Define material behavior under forces or deformation (e.g., Hooke’s Law).

• Linear for small deformations (Hooke’s law)

• Nonlinear for larger deformations (e.g., Neo-Hookean).

• Why Use KANs?

• predict the P (stress) tensor from the F (deformation) tensor

• Incorporates prior knowledge (e.g., linear laws).

• Extracts interpretable symbolic formulas via symbolic regression.

Results:
With Prior Knowledge:

• The initial KAN is based on
the linear constitutive law.

• Helps guide training but may
converge to poor local minima

• Without Prior Knowledge:

• Start with a randomly
initialized KAN.

• Requires more data to train
but avoids being biased

Future

6

Software

Outlook

● Scalability Challenge
○ Limited interpretability at large scales
○ Need better methods for managing complexity

● Key Research Areas
○ Advanced interpretability methods
○ Scaling to larger problems
○ Expansion beyond physics

KAN VS MLP

MLP:

● Lower interpribility
● Well established and proven

KAN:

● 10x Slower training time
● Higher interpretability
● Continual learning
● More parameter efficient

References

1. Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou, and M. Tegmark, "KAN: Kolmogorov-Arnold
Networks," arXiv preprint, arXiv:2404.19756, Jun. 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2404.19756

2. Z. Liu, P. Ma, Y. Wang, W. Matusik, and M. Tegmark, "KAN 2.0: Kolmogorov-Arnold Networks meet science," arXiv preprint,
arXiv:2408.10205, Aug. 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2408.10205

https://doi.org/10.48550/arXiv.2404.19756
https://doi.org/10.48550/arXiv.2408.10205

1. Discovering conserved quantities

- Conserved quantities as differential equation solving
- z ∈ Rd governed by the equation dz/dt = f(z)
- H(z) is a conserved quantity if f(z) · ∇H(z) = 0 for all Z

Harmonic Oscillator

● System Description:
○ Phase space: z = (x, p)

■ x: position
■ p: momentum

● Evolution:
○ d(x,p)/dt = (p, -x)

Harmonic Oscillator
Energy Conservation:

● Energy function: H = ½(x² + p²)
● Phase space: z = (x, p)
● Conservation proof:

○ Force vector: f(z) = (p, -x)
○ Gradient of H: ∇H(z) = (x, p)
○ Dot product: f(z) · ∇H(z) = p·x +

(-x)·p = 0
○ Zero result proves H is conserved

KAN:

- Parametrize H into network
- Train with loss function

