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Motivation

# Why would anyone predict the weather using machine learning?



Importance of Weather Forecasts

Put simply:

= Know whether or not to take an umbrella

But also:

= Prepare more accurately for extreme events
(cyclones, floods, droughts)

= Forecast energy demand and renewable energy
generation
Ultimately:

= Make informed decisions



Weather Forecast Basics

State of the Art:

= Numerical Weather Prediction (NWP) by European Centre
for Medium-Range Weather Forecasts (ECMWF)

= Solving differential equations that describe physics of the atmosphere

= Accurate

= Computationally expensive
can we change that?
= Slow



ML Weather Prediction: Previous Works

Specific humidity (at 700 hPa): 2018-11-19 18:00 (06 hours)

= GraphCast

= Graph neural network
= by Google DeepMind

= Tries to predict the actual weather
(deterministic forecast)

= Trained with RMSE - results are blurry

= Pangu-Weather

= Deep neural network

= by Huawei Cloud

https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/



Main Challenge for Weather Forecasting

= Atmosphere is a chaotic system

-
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Chaotic System: small perturbations in initial conditions
lead to massive changes in outcome (Butterfly Effect).
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= Impossible to perfectly observe initial conditions

= We want to know, how sure we are with our predictions

= Uncertainty measure needed



Ensembles

Basic Idea: Generate multiple predictions to
approximate the actual distribution

predictions

[

physical variable

uncertainty

time

e ground truth



Ensembles

A

= ECMWF's ensemble forecast is called ENS

= Consists of one “best guess” based on best available input
data and 50 additional predictions based on perturbed
inputs and model assumptions

L ranged weather forecasts

( “Gold Standard” of medium-
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Comparison of Approaches

NWP Deterministic MLWP
(e.g. ENS by ECMWEF) (e.g. GraphCast)

accuracy high high
speed low high!
(computational) cost high low!

uncertainty measure yes no

Tapart from the training

high

high!

lowl!

yes



GenCast; Overview

= Conditional diffusion model sampling a
prediction of the weather in a 12h timestep for the
entire earth from the approximated forecast
distribution

= Conditioned on the two previous states as input

= 8 min inference time for 30 timesteps (equivalent
to 15-day forecast) on a TPUV5 device
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Method

# Aren't diffusion models for image and media generation?



Basic Idea

approximated by neural
network (GenCast)

= Model joint probability distribution

T
p(X*"0=%) = p(x°|0=") p(X'TX%) = p(X°10=°) | kp()_ftl)_ft_l) —
- b ) t=1

State Inference Forecast Model Xt atmospheric state at time t
0=t: observations up to time t

= Use conditional diffusion model to generate samples of
the approximated actual distribution of the atmospheric
state for the entire globe

Diffusion model conditioned
/\ on initial states X©°, X-1 /\/\

. o Diffusion steps _ o
Prior distribution Approximated data distribution
< at next time step
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p(XO:TIOSO) = p(X()lOSO) p(Xl:TIXO)
Dataset — —

State Inference Forecast Model

= Reanalysis data (ERA5) from ECMWEF including ERAS EDA
(ensemble of data assimilations) for initial conditions

Timespan 1940 - present (84 years)
Spatial Resolution 0.25° (approx. 28km) <«—— divides the globe into 1440 x 720 cells
Temporal Resolution 1h time steps

Pressure Levels 37 (up to 80 km height)

13 —



Input and Output Parameters

Type Variable name Short ECMWF Role (accumulation
name Parameter ID period, if applicable)

Atmospheric Geopotential z 129 Input/Predicted |
Atmospher%c Specific humidity q 133 Input/ Pred%cted 6 atm OSph eric variables
Atmospheric Temperature t 130 Input/Predicted
Atmospheric U component of wind u 131 Input/Predicted - foreach of the 13 pressure
Atmospheric V component of wind \4 132 Input/Predicted levels used by GenCast
Atmospheric Vertical velocity w 135 Input/Predicted |

Single 2 metre temperature 2t 167 Input/Predicted

Single 10 metre u wind component  10u 165 Input/Predicted

Single 10 metre v wind component  10v 166 Input/Predicted

Single Mean sea level pressure msl 151 Input/Predicted

Single Sea Surface Temperature sst 34 Input/Predicted

Single Total precipitation tp 228 Predicted (12h)

Static Geopotential at surface z 129 Input

Static Land-sea mask Ism 172 Input

Static Latitude n/a n/a Input

Static Longitude n/a n/a Input

Clock Local time of day n/a n/a Input

Clock Elapsed year progress n/a n/a Input

Price, . et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table B1.



720 Cells Height

Data ‘

= 40 years of the ERA5 dataset

= Each sample’s dimensions:

Spatial dimensions representing the
entire earth as a 0.25° lat-lon-grid

84 x 720 x 1440 ~ 87 Mio.

6 surface variables Variables to describe

+ atmospheric state (GenCast

13 vertical pressure Ieyels times 6 output and major part of input)
atmospheric variables

Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1
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Quick Intro: GraphCast

# Back to the roots



Compare: GraphCast Overall Idea

a) Input weather state b) Predict the next state c) Roll out a forecast

1 / 0.25° lat-lon-grid for ‘
all pressure levels |

71l .J"'_.h‘n..qi.
JEef  JERERERCE

A
i
1]} ' ' L
T . ST .
L] i
Wl B
LA o 1 o .
o\ - 'y
KRpp s s i 5 § b yWWIY " !
‘rTigeanaaaasaa Ly
T2 BaRANBRRES

:;J * GC T

Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1



Compare: GraphCast Architecture

approx. 1 million
lat-lon-grid cells

approx. 1 million

[ 41162 nodes ] lat-lon-grid cells

d) Encoder e) Processor f) Decoder
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Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1



Back to GenCast

# Diffusion is all you need



determined by noise schedule

Diffusion Model Basics -
DP\Zo

Forward process: add noise p(z1 | z0) =N (990 | \/a170, (1 041)]1)
p(xe | T, o) =N (a:l | Jagzy, (1 — az)]I)

p(as | 20) = N (21 | y/Brzo, (1 — &)1

Xt

sample
p(Xy) ~ N (0, 1)

L1 QG(iEt—l | iL’t)

go(zi—1 | xt) = N (Te-1 | po(zt, t), Zo(zt, t))

X5 Xt

, learned by NN
Backward process: remove noise
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https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models



GenCast

GenCast: Autoregressive
Diffusion Forecast

f 4 R
= 1. Sample residue Z} from an isotropic normalized
?Z’ Gaussian
§ . 2. Denoise Z} with one solver step ry calling the denoiser
n -- Dy conditioned on the previous states XY and X~ ! to
receive Z{
3. Repeat until fully denoised residue Z3 with N = 20
4. Invert normalization of residue by SZ2, and add to
previous state X° to receive the next state X*
5. Repeat steps 1.to 4. for T = 30 timesteps (12h each) to
S receive a 15-day forecast .

Time o

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1

X*: atmospheric state at time t e [—1, T]
Z!: normalized sample after n € [0, N| denoising steps at time te [—1, T
rg: solver step calling denoiser Dy

21



Predicting the Delta

1
Xt + SZy

Xt—l—l

l_'_l lﬂ_l
predicted next current atmospheric inverts
atmospheric state state normalization

change of atmospheric state
predicted by solver step ry

GenCast

Diffusion solver steps

}

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1
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Probability Flow ODE

Basic Diffusion Model:

= adding controlled noise at every iteration in
forward process

= in backward process remove noise that is
again sampled

= stochastic process (non-deterministic)

= can be described by stochastic differential
equation (SDE)

= comparably slow

GenCast:

= Every diffusion SDE has a corresponding
probability flow ODE describing the
denoising process continuously
can be solved with numerical ODE solvers
GenCast uses DPMSolver++2S
deterministic
computationally efficient

https://research.nvidia.com/labs/toronto-ai/GENIE/assets/genie_pipeline.png

Po (XO) emm@mes  Probability Flow ODE trajectories

X0 X1

b1 (Xl)

23 —



Probability Flow ODE Solver

t+1
A

y,
DPMSolver++2S
= —— = - Second truncated Taylor method
Po (Xo) @mm@m»  Probability Flow ODE trajectories b1 (Xl) (quadratic extrapolation)
s p N -
re Solves the probability flow ODE numerically:
_ _ prediction by
dx J(t)a(t) lelng (x’ U(t))ldt Denoiser Neural Network
score function _ _ ' | . | 2
. learned by the denoiser _j_> Vxlogp (x’ O-(t)) = (Do (x;0) —x)/0

24 —

https://research.nvidia.com/labs/toronto-ai/GENIE/assets/genie_pipeline.png



GenCast: One Full Denoising Step

t+1
A

-

Denoising Solver Step 1y

dx = —6(t)a(t) V,logp (x;0(t))dt

Denoiser D, N
Preconditioning
for target normalization
Encoder Processor Decoder
\_ J
Y1€+1 — DG (Zrtl+1;Xt,Xt—1,O.)
Yt+1 4 ODE Solver (DPMSolver++2S) N
n
Solve the probability flow ODE
, numerically for ZL+1:
> dZ*1(n) o(n
dn( ) — O-En; (Zt+1(n) _ Yt+1(n))
\_ J
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Processor: GraphCast vs. GenCast

Processor

g) Simultaneous multi-mesh message-passing

Encoder
= |teratively refined multi-mesh
= Allows for long-distance node
‘ communication besides standard
GraphCast Local message passing message passing
GenCast Groph TronsPormer Processor O
g ———— realedge M6
\‘\ —_—— - Virtual e,dge

= One single 6-refined icosahedral mesh
= 4-headed self-attention over 32-hop

neighborhood allows for long-distance
Global attention node communication

https://miro.medium.com/v2/resize:fit:1200/1*gOUffNZRkX]B5utkz6hIWg.png
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Processor: Graph Transformer Architecture

512 é Processor )
- features . )
per node

Feed
orwar
it
e

F rd
Add & Norm
Multi-Head
Atention
ked

5

Positional @_( Positional
Enceding Encoding
Input Output
Embedding [Embedding
Inputs Qutputs Outputs

(shifted right) (shifted right

16x consecutive standard transformer blocks with
4-head self-attention and feature dimension of 512

2] —

Vaswani, A. et al. (2017). Attention Is All You Need.



Training the Denoiser Dy: Loss Function

= Denoiser trained to predict Y* as expectation of noise-free
target Z* through minimization of loss function:

Z E A(0)|G|1|J| Zzwjai(Yifj—Zij)z

t€ Dirain 1€EG jeJ

t : timestep index of training set Diain
jedJ : variable index (includes pressure level)
i€ G : location index (lat & lon)

w; : loss weight for variable j
a; : area of lat-lon grid cell ¢
A(o) : loss weight for noise level o

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. D4



Training Schedule

= The model is pre-trained at lower resolution before fine-
tuning at actual resolution during the final training

Number training steps
Spatial resolution
Denoiser mesh

Training hardware

Training duration

Pre-Training
2 million
10
5-refined icosahedral

32x TPUV5

3.5 days

Final Training
64 000
0.25°
6-refined icosahedral

32x TPUV5

1.5 days
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Data Split

/

train /

1979 - 2017

=

validation

1979 - 2018

re-train

/




Overall Architecture

-

GenCast
(Conditional Diffusion Model)

/ Denoiser \

(Graph Neural Networks)

Processor
(Graph Transformer)

\_ %

Zf{l_l

~

31



Experiments and Results

# Let's benchmark



GenCast vs GraphCast: Typhoon Hagibis 2019

ERAS5 Analysis

GenCast Ensemble  GraphCast
b Sample #1 ¢ Sample #2 ¢ Sample #3 @ mean f
L . c P : Unain

Forecast from
1 day earlier

specific humidity
(700 hPa)

@2019-10-12
06:00:00

Forecast from
15 days earlier

= GenCast generates crisp

= GraphCast generates blurry forecasts
samples even 15 days ahead

resembling more the ensemble mean

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 2

33 —



GenCast vs ENS
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Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 3
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Strengths and Limitations

# Mighty but not almighty



The Good ...

= Very accurate

= pbeats ENS in 97.4% of tested variable combinations

fast

= only 8 minutes inference time for a single 15-day forecast (30 timesteps of
12h each) on a Cloud TPUV5 device

lower (computational) cost than ENS

= inherent uncertainty measure
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... and the “Bad”

predicting only one sample is not a “good” forecast as it is randomly
sampled from distribution

computationally more expensive than deterministic MLWP models (like
GraphCast)

still relies on NWP ensemble data assimilation for initial conditions

temporal resolution limited: only 12h steps (compared to 6h steps for
ENS)

underlying dataset ERAS is lower bound for spatial and temporal
resolution

= compare to: ENS recently got updated to 0.1° spatial resolution

physical behavior only incorporated in initial condition

Diffusion model only approximates underlying distribution

37 —



Conclusion

# So what?



Potential and Outlook

Potential:
= Application in industry promising (e.g. energy trading)

= Long-term forecasts potentially interesting

Outlook:

= Papers in Al-based weather forecasting are skyrocketing

Many different architectures led to promising results
ECMWEF started adopting Al models

Exploiting spherical properties

Higher resolution data for re-training
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Questions?

# Let's talk about it



Sources

#



Sources

l. Price, A. Sanchez-Gonzalez, F. Alet, T. R. Andersson, A. El-Kadi, D. Masters, T. Ewalds, J. Stott, S.
Mohamed, P. Battaglia, R. Lam, M. Willson. GenCast: Diffusion-based ensemble forecasting for
medium-range weather. arXiv, 2023.

R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z.
Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, P.
Battaglia. GraphCast: Learning skillful medium-range global weather forecasting. Science, 382, 2023.

T. Karras, M. Aittala, T. Aila, S. Laine. Elucidating the Design Space of Diffusion-Based Generative
Models. Conference on Neural Information Processing Systems, 36, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. Kaiser, and |. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

G. Nikolentzos, G. Dasoulas, M. Vazirgiannis. k-hop graph neural networks. Neural Networks, Volume
130, 2020. Pages 195-205.

Video from the author: https://www.youtube.com/watch?v=ez1plFcU52s
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Annex

# Further information needed?



Hyperparameters: Diffusion Model Training

Optimiser AdamW (Loshchilov and Hutter, 2018)
LR decay schedule Cosine
Stage 1: Batch size 32
Stage 1: Warm-up steps le3
Stage 1: Total train steps 2e6
Stage 1: Peak LR le-3
Stage 1: Weight decay 0.1
Stage 2: Batch size 32
Stage 2: Warm-up steps S5e3
Stage 2: Total train steps 64000
Stage 2: Peak LR le-4

Stage 2: Weight decay 0.1

Price, . et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table D1.



Denoiser Preconditioning

Do(Z6; X'™1,X'72, 0) 1= cokip(0) * Zh + Cour(0) - focin(0)Z5s X7, X2, croise(0)

= fpis the neural network function
= ZL is a noise-corrupted version of target Z* at noise level o
Cins Coutr Cskips Cnoise @€ preconditioning functions

Skip scaling  cuip(0) 02 ../ (02 + aﬁam)
Output scaling cou (o) 0 * Odata/ \/ ng + o2
Input scaling  ¢jy(0) 1/\/02 +

(o)

1+ In(o)

Noise cond. cCpoise(O

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1
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Noise Schedule

1 i 1 1 \p |
O; 1= (a,f,’mx+m orf;in—or?lax)) forie {0...N-1}

= p controls shortening of noising steps near a,,;, in exchange for longer steps near g,,4
Omax = 00, Omin = On—1, are hyperparameters for the highest and lowest noise level

Name Notation Value, sampling Value, training
Maximum noise level T 80 88
Minimum noise level Omin 0.03 0.02

Shape of noise distribution p 7 7
Number of noise levels N 20
Stochastic churn rate Ly 2.5
Churn maximum noise level - 80
Churn minimum noise level Senitin 0.75

Noise level inflation factor B s 1.05

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1



CRPS (Continuously Ranked Probability Score)

~
The CRPS tries to measure goodness of probabilistic forecast by

comparing the expected value of the forecast with the ground truth
while incorporating the forecast’s uncertainty. )

CRPS::%ZWZ ( lelk Yikl = ZIX&—X&'I)

k m,m’

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. E.2.1.



GenCast vs ENS: Extreme Weather
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Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 3
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Denoiser Distribution

» 1 1 1 D
F7 () = (0 + (00, — Ohar)

= F~1(u)is inverse CDF of noise schedule - sample by drawing u ~ U[0, 1]
= p controls shortening of noising steps near a,,;,, in exchange for longer steps near g,,4x
Omax = 00, Omin = On—1, are hyperparameters for the highest and lowest noise level

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1
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