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Motivation 
# Why would anyone predict the weather using machine learning? 



Put simply:  

 Know whether or not to take an umbrella 

But also: 

 Prepare more accurately for extreme events  
(cyclones, floods, droughts) 

 Forecast energy demand and renewable energy 
generation 

Ultimately:  

 Make informed decisions 
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Importance of Weather Forecasts 



State of the Art: 

 Numerical Weather Prediction (NWP) by European Centre 
for Medium-Range Weather Forecasts (ECMWF) 
 Solving differential equations that describe physics of the atmosphere 

 Accurate 

 Computationally expensive 

 Slow 
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Weather Forecast Basics 

can we change that? 



 GraphCast 
 Graph neural network 

 by Google DeepMind 

 Tries to predict the actual weather 
(deterministic forecast) 

 Trained with RMSE  results are blurry 

 Pangu-Weather 
 Deep neural network 

 by Huawei Cloud 

 … 
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ML Weather Prediction: Previous Works 

https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/ 



 Atmosphere is a chaotic system 

 

 

 

 Impossible to perfectly observe initial conditions 

 We want to know, how sure we are with our predictions 
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Main Challenge for Weather Forecasting 

Chaotic System: small perturbations in initial conditions 
lead to massive changes in outcome (Butterfly Effect). 

Uncertainty measure needed 



Basic Idea: Generate multiple predictions to 
approximate the actual distribution 
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 ECMWF’s ensemble forecast is called ENS 
 Consists of one “best guess” based on best available input 

data and 50 additional predictions based on perturbed 
inputs and model assumptions 
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Ensembles 

https://charts.ecmwf.int/products/medium-2mt-wind30?base_time=202411070000&projection=opencharts_europe&valid_time=202411101500 

“Gold Standard” of medium-
ranged weather forecasts 

max 
90% 
75% 
median 
25% 
10% 
min 



Comparison of Approaches 

1apart from the training 
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NWP 
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(e.g. GraphCast) 
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 Conditional diffusion model sampling a 
prediction of the weather in a 12h timestep for the 
entire earth from the approximated forecast 
distribution 

 Conditioned on the two previous states as input 

 8 min inference time for 30 timesteps (equivalent 
to 15-day forecast) on a TPUv5 device 



Method 
# Aren’t diffusion models for image and media generation? 



Diffusion model conditioned 
on initial states X0, X-1 

 Model joint probability distribution 

 

 

 

 Use conditional diffusion model to generate samples of 
the approximated actual distribution of the atmospheric 
state for the entire globe 
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Basic Idea 

State Inference Forecast Model 

approximated by neural 
network (GenCast) 

Diffusion steps 
Prior distribution Approximated data distribution 

at next time step 

𝑋ത௧: atmospheric state at time 𝑡 
𝑂ஸ௧: observations up to time 𝑡 



 Reanalysis data (ERA5) from ECMWF including ERA5 EDA 
(ensemble of data assimilations) for initial conditions 
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Dataset 

1940 – present (84 years) Timespan 

0.25° (approx. 28km) Spatial Resolution 

1h time steps Temporal Resolution 

37 (up to 80 km height) Pressure Levels 

divides the globe into 1440 x 720 cells 



Input and Output Parameters 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table B1. 
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6 atmospheric variables 
for each of the 13 pressure 
levels used by GenCast 



 40 years of the ERA5 dataset 

 Each sample’s dimensions: 
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Data 

Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1 

Variables to describe 
atmospheric state (GenCast 

output and major part of input) 

6 surface variables 
+ 

13 vertical pressure levels times 6 
atmospheric variables 

Spatial dimensions representing the 
entire earth as a 0.25° lat-lon-grid 

1440 Cells Width 

720 Cells Height 



Quick Intro: GraphCast 
# Back to the roots 



Compare: GraphCast Overall Idea 

Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1 
17 

0.25° lat-lon-grid for 
all pressure levels 



Compare: GraphCast Architecture 

Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1 
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41 162 nodes approx. 1 million  
lat-lon-grid cells 

approx. 1 million  
lat-lon-grid cells 



Back to GenCast 
# Diffusion is all you need 



Diffusion Model Basics 

https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models 
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Forward process: add noise 

Backward process: remove noise 

x0 x1 x2 xt xN 

… 

x0 x1 x2 xt xN 

… 

sample 

learned by NN 

determined by noise schedule 
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Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1 

GenCast: Autoregressive 
Diffusion Forecast 

1. Sample residue ଴
ଵ from an isotropic normalized 

Gaussian 
2. Denoise ଴

ଵ with one solver step ఏ calling the denoiser 
ఏ conditioned on the previous states ଴ and ିଵ to 

receive ଵ
ଵ 

3. Repeat until fully denoised residue ே
ଵ  with  

4. Invert normalization of residue by ଶ଴
ଵ  and add to 

previous state ଴ to receive the next state ଵ 
5. Repeat steps 1. to 4. for  timesteps (12h each) to 

receive a 15-day forecast 



Predicting the Delta 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1 
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current atmospheric 
state 

inverts 
normalization 

change of atmospheric state 
predicted by solver step ఏ 

predicted next 
atmospheric state 



Probability Flow ODE 

https://research.nvidia.com/labs/toronto-ai/GENIE/assets/genie_pipeline.png 
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Basic Diffusion Model: 
 adding controlled noise at every iteration in 

forward process 
 in backward process remove noise that is 

again sampled 
 stochastic process (non-deterministic) 
 can be described by stochastic differential 

equation (SDE) 
 comparably slow 
 

GenCast: 
 Every diffusion SDE has a corresponding 

probability flow ODE describing the 
denoising process continuously 

 can be solved with numerical ODE solvers 
 GenCast uses DPMSolver++2S 
 deterministic 
 computationally efficient 

x0 x1 x2 xt xN 

… 



Probability Flow ODE Solver 

https://research.nvidia.com/labs/toronto-ai/GENIE/assets/genie_pipeline.png 
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DPMSolver++2S 

 

score function  
learned by the denoiser 

ఏ solves the probability flow ODE numerically: 

 

prediction by  
Denoiser Neural Network 

ఏ 



Denoising Solver Step 𝜽 

d𝒙 = −𝜎̇ 𝑡 𝜎 𝑡  ∇𝒙 log 𝑝 𝒙; 𝜎 𝑡 d𝑡 

GenCast: One Full Denoising Step 
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𝑌௡
௧ାଵ = 𝐷ఏ 𝑍௡

௧ାଵ; 𝑋௧, 𝑋௧ିଵ, 𝜎  

 ODE Solver (DPMSolver++2S) 

௧ାଵ
௧ାଵ ௧ାଵ  

Solve the probability flow ODE 
numerically for ௡ାଵ

௧ାଵ : 

 

𝜽Denoiser 𝜽 

Encoder Decoder Processor 

Preconditioning 
for target normalization 

ఏ 

 

 



Processor: GraphCast vs. GenCast 

https://miro.medium.com/v2/resize:fit:1200/1*gOUffNZRkXJB5utkz6hlWg.png 
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Encoder 

Decoder 

Processor 

Processor 

 Iteratively refined multi-mesh 
 Allows for long-distance node 

communication besides standard 
message passing 

 One single 6-refined icosahedral mesh 
 4-headed self-attention over 32-hop 

neighborhood allows for long-distance 
node communication 

Encoder 

Decoder 

M6 

GraphCast 

GenCast 



Processor 

Processor: Graph Transformer Architecture 

Vaswani, A. et al. (2017). Attention Is All You Need. 
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16x consecutive standard transformer blocks with 
4-head self-attention and feature dimension of 512 

… 

…
 

512 
features 
per node 

Encoder Decoder 



 Denoiser trained to predict  as expectation of noise-free 
target  through minimization of loss function: 
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Training the Denoiser : Loss Function 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. D4 



 The model is pre-trained at lower resolution before fine-
tuning at actual resolution during the final training 
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Training Schedule 

Final Training Pre-Training 

64 000 2 million Number training steps 

0.25° 1° Spatial resolution 

6-refined icosahedral 5-refined icosahedral Denoiser mesh 

32x TPUv5 32x TPUv5 Training hardware 

1.5 days 3.5 days Training duration 



Data Split 
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1979 – 2017 2018 

1979 – 2018 2019 

train validation 

test re-train 



Overall Architecture 
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GenCast 
(Conditional Diffusion Model) 

Denoiser 
(Graph Neural Networks) 

Processor 
(Graph Transformer) 



Experiments and Results 
# Let’s benchmark 



GenCast vs GraphCast: Typhoon Hagibis 2019 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 2 
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 GenCast generates crisp 
samples even 15 days ahead 

 GraphCast generates blurry forecasts 
resembling more the ensemble mean 



GenCast vs ENS 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 3 
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1320 
variable 

combinations 

97.4% 
of variable 

combinations, GenCast 
outperforms ENS 



Strengths and Limitations 
# Mighty but not almighty 



 very accurate 
 beats ENS in 97.4% of tested variable combinations 

 fast 
 only 8 minutes inference time for a single 15-day forecast (30 timesteps of 

12h each) on a Cloud TPUv5 device 

 lower (computational) cost than ENS 

 inherent uncertainty measure 

The Good … 
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 predicting only one sample is not a “good” forecast as it is randomly 
sampled from distribution 

 computationally more expensive than deterministic MLWP models (like 
GraphCast) 

 still relies on NWP ensemble data assimilation for initial conditions 

 temporal resolution limited: only 12h steps (compared to 6h steps for 
ENS) 

 underlying dataset ERA5 is lower bound for spatial and temporal 
resolution 
 compare to: ENS recently got updated to 0.1° spatial resolution 

 physical behavior only incorporated in initial condition 

 Diffusion model only approximates underlying distribution 

… and the “Bad” 
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Conclusion 
# So what? 



Potential: 

 Application in industry promising (e.g. energy trading) 

 Long-term forecasts potentially interesting 
 

Outlook: 

 Papers in AI-based weather forecasting are skyrocketing 

 Many different architectures led to promising results 

 ECMWF started adopting AI models 

 Exploiting spherical properties 

 Higher resolution data for re-training 

 

Potential and Outlook 
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Questions? 
# Let’s talk about it 



Sources 
# 



 I. Price, A. Sanchez-Gonzalez, F. Alet, T. R. Andersson, A. El-Kadi, D. Masters, T. Ewalds, J. Stott, S. 
Mohamed, P. Battaglia, R. Lam, M. Willson. GenCast: Diffusion-based ensemble forecasting for 
medium-range weather. arXiv, 2023. 

 R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. 
Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, P. 
Battaglia. GraphCast: Learning skillful medium-range global weather forecasting. Science, 382, 2023. 

 T. Karras, M. Aittala, T. Aila, S. Laine. Elucidating the Design Space of Diffusion-Based Generative 
Models. Conference on Neural Information Processing Systems, 36, 2022. 

 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 
Attention is all you need. Advances in neural information processing systems, 30, 2017. 

 G. Nikolentzos, G. Dasoulas, M. Vazirgiannis. k-hop graph neural networks. Neural Networks, Volume 
130, 2020. Pages 195-205. 

 Video from the author: https://www.youtube.com/watch?v=ez1pIFcU52s  

Sources 
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Annex 
# Further information needed? 



Hyperparameters: Diffusion Model Training 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table D1. 
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Denoiser Preconditioning 

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1 
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 ఏ is the neural network function 
 ఙ

௧  is a noise-corrupted version of target ௧ at noise level  
 ௜௡, ௢௨௧, ௦௞௜௣, ௡௢௜௦௘ are preconditioning functions 



Noise Schedule 

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1 
46 

  controls shortening of noising steps near ௠௜௡ in exchange for longer steps near ௠௔௫ 
 ௠௔௫ ଴, ௠௜௡ ேିଵ, are hyperparameters for the highest and lowest noise level 



CRPS (Continuously Ranked Probability Score) 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. E.2.1. 
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The CRPS tries to measure goodness of probabilistic forecast by 
comparing the expected value of the forecast with the ground truth 
while incorporating the forecast’s uncertainty. 



GenCast vs ENS: Extreme Weather 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 3 
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Denoiser Distribution 

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1 
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 ିଵ is inverse CDF of noise schedule  sample by drawing 
  controls shortening of noising steps near ௠௜௡ in exchange for longer steps near ௠௔௫ 
 ௠௔௫ ଴, ௠௜௡ ேିଵ, are hyperparameters for the highest and lowest noise level 


