

### GenCast: Diffusion-based ensemble forecasting for medium-range weather

Leonhard Döring

# Motivation

# Why would anyone predict the weather using machine learning?



### **Importance of Weather Forecasts**

### Put simply:

Know whether or not to take an umbrella

### But also:

- Prepare more accurately for extreme events (cyclones, floods, droughts)
- Forecast energy demand and renewable energy generation

### **Ultimately:**

Make informed decisions

### Weather Forecast Basics

### **State of the Art:**

- Numerical Weather Prediction (NWP) by European Centre for Medium-Range Weather Forecasts (ECMWF)
  - Solving differential equations that describe physics of the atmosphere
- Accurate
- Computationally expensive
- Slow

can we change that?

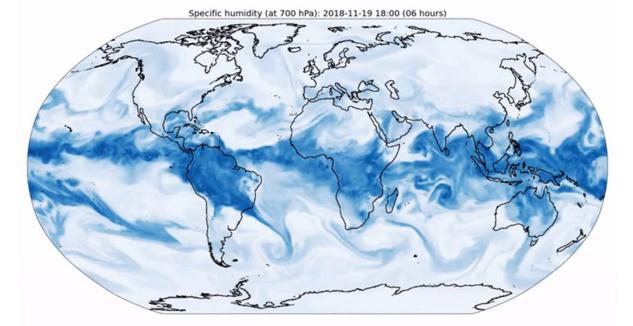
### **ML Weather Prediction: Previous Works**

### GraphCast

- Graph neural network
- by Google DeepMind
- Tries to predict the actual weather (deterministic forecast)
- Trained with RMSE  $\rightarrow$  results are blurry

#### Pangu-Weather

- Deep neural network
- by Huawei Cloud



https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

## Main Challenge for Weather Forecasting

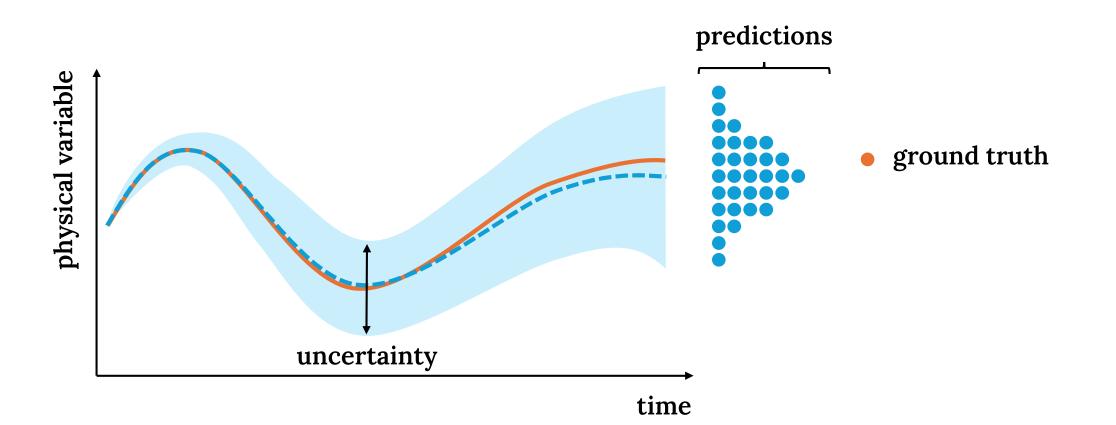
Atmosphere is a chaotic system

**Chaotic System:** small perturbations in initial conditions lead to massive changes in outcome (**Butterfly Effect**).

- Impossible to perfectly observe initial conditions
- We want to know, how sure we are with our predictions
  - → Uncertainty measure needed

### Ensembles

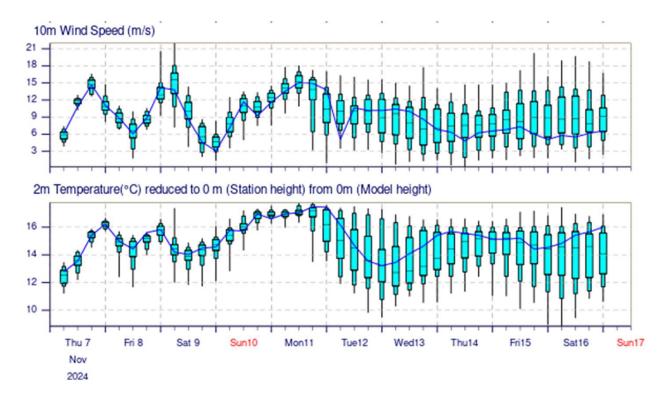
**Basic Idea:** Generate multiple predictions to approximate the actual distribution



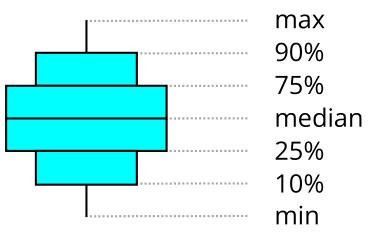
### Ensembles

#### ECMWF's ensemble forecast is called ENS

 Consists of one "best guess" based on best available input data and 50 additional predictions based on perturbed inputs and model assumptions

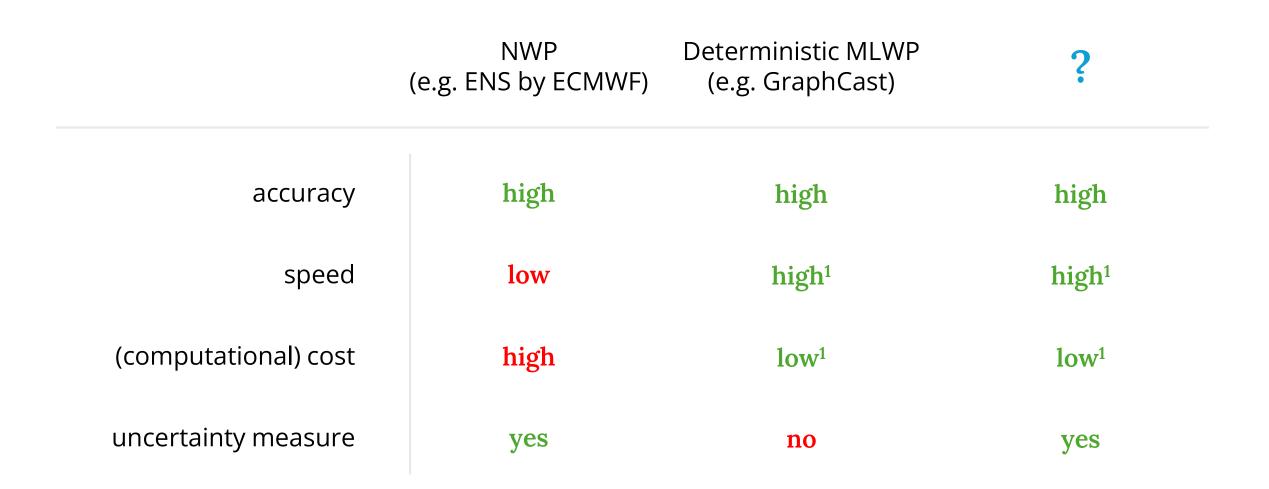


"Gold Standard" of mediumranged weather forecasts



https://charts.ecmwf.int/products/medium-2mt-wind30?base\_time=202411070000&projection=opencharts\_europe&valid\_time=202411101500

## **Comparison of Approaches**



9

<sup>1</sup>apart from the training

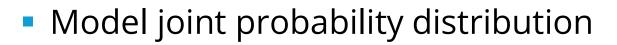
# **GenCast: Overview**

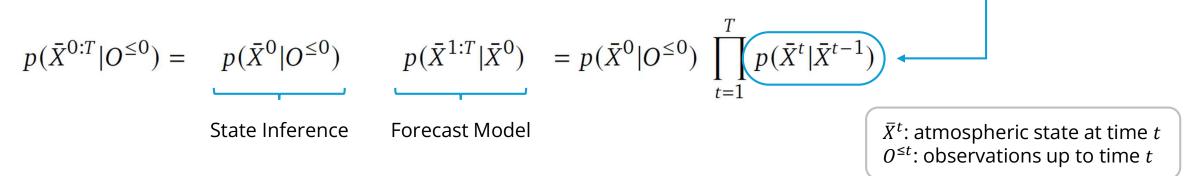
- Conditional diffusion model sampling a prediction of the weather in a 12h timestep for the entire earth from the approximated forecast distribution
- Conditioned on the two previous states as input
- 8 min inference time for 30 timesteps (equivalent to 15-day forecast) on a TPUv5 device

# Method

# Aren't diffusion models for image and media generation?

### **Basic Idea**



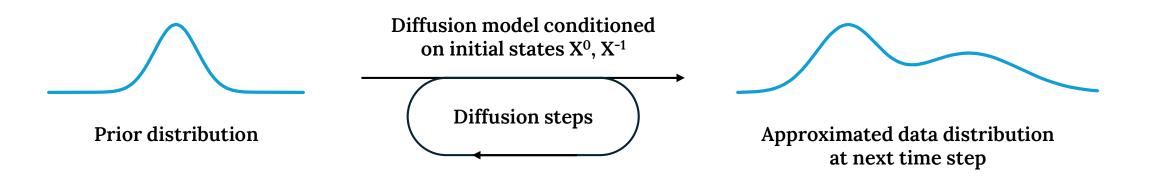


approximated by neural

network (GenCast)

12

 Use conditional diffusion model to generate samples of the approximated actual distribution of the atmospheric state for the entire globe



### Dataset

$$p(\bar{X}^{0:T}|O^{\leq 0}) = p(\bar{X}^{0}|O^{\leq 0}) \qquad p(\bar{X}^{1:T}|\bar{X}^{0})$$
  
State Inference Forecast Model

 Reanalysis data (ERA5) from ECMWF including ERA5 EDA (ensemble of data assimilations) for initial conditions ——

| Timespan            | <b>1940 – present</b> (84 years)     |                                           |
|---------------------|--------------------------------------|-------------------------------------------|
| Spatial Resolution  | <b>0.25°</b> (approx. 28km) <b>~</b> | — divides the globe into 1440 x 720 cells |
| Temporal Resolution | <b>1h</b> time steps                 |                                           |
| Pressure Levels     | <b>37</b> (up to 80 km height)       |                                           |

### **Input and Output Parameters**

| Туре        | Variable name             | Short<br>name | ECMWF<br>Parameter ID | Role (accumulation period, if applicable) |
|-------------|---------------------------|---------------|-----------------------|-------------------------------------------|
| Atmospheric | Geopotential              | Z             | 129                   | Input/Predicted                           |
| Atmospheric | Specific humidity         | q             | 133                   | Input/Predicted                           |
| Atmospheric | Temperature               | t             | 130                   | Input/Predicted                           |
| Atmospheric | U component of wind       | u             | 131                   | Input/Predicted                           |
| Atmospheric | V component of wind       | V             | 132                   | Input/Predicted                           |
| Atmospheric | Vertical velocity         | W             | 135                   | Input/Predicted                           |
| Single      | 2 metre temperature       | 2t            | 167                   | Input/Predicted                           |
| Single      | 10 metre u wind component | 10u           | 165                   | Input/Predicted                           |
| Single      | 10 metre v wind component | 10v           | 166                   | Input/Predicted                           |
| Single      | Mean sea level pressure   | msl           | 151                   | Input/Predicted                           |
| Single      | Sea Surface Temperature   | sst           | 34                    | Input/Predicted                           |
| Single      | Total precipitation       | tp            | 228                   | Predicted (12h)                           |
| Static      | Geopotential at surface   | Z             | 129                   | Input                                     |
| Static      | Land-sea mask             | lsm           | 172                   | Input                                     |
| Static      | Latitude                  | n/a           | n/a                   | Input                                     |
| Static      | Longitude                 | n/a           | n/a                   | Input                                     |
| Clock       | Local time of day         | n/a           | n/a                   | Input                                     |
| Clock       | Elapsed year progress     | n/a           | n/a                   | Input                                     |

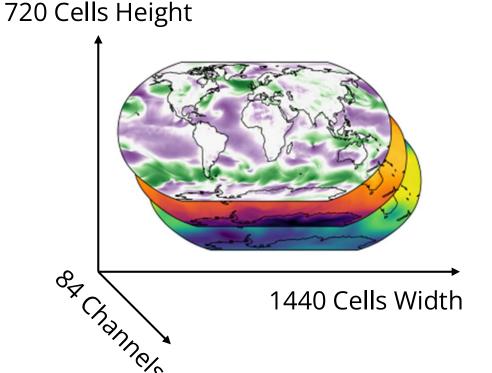
6 atmospheric variables for each of the 13 pressure levels used by GenCast

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table B1.

### Data

- 40 years of the ERA5 dataset
- Each sample's dimensions:

Spatial dimensions representing the entire earth as a 0.25° lat-lon-grid



# $84 \times 720 \times 1440 \approx 87 \,\mathrm{Mio}.$

6 surface variables + 13 vertical pressure levels times 6 atmospheric variables Variables to describe atmospheric state (GenCast output and major part of input)

#### Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1

# Quick Intro: GraphCast

# Back to the roots

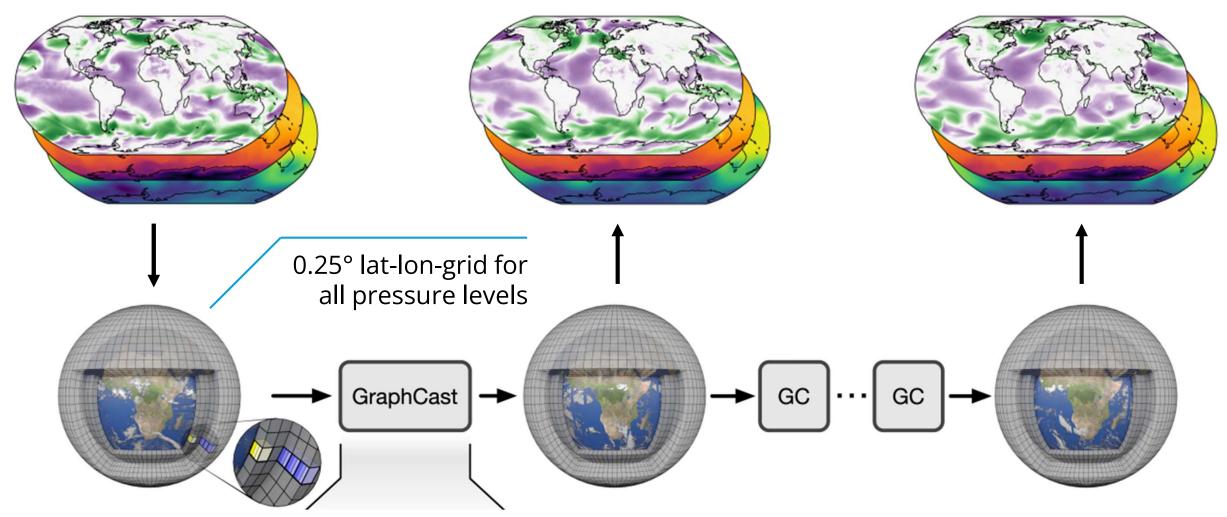
### Compare: GraphCast Overall Idea

a) Input weather state

b) Predict the next state

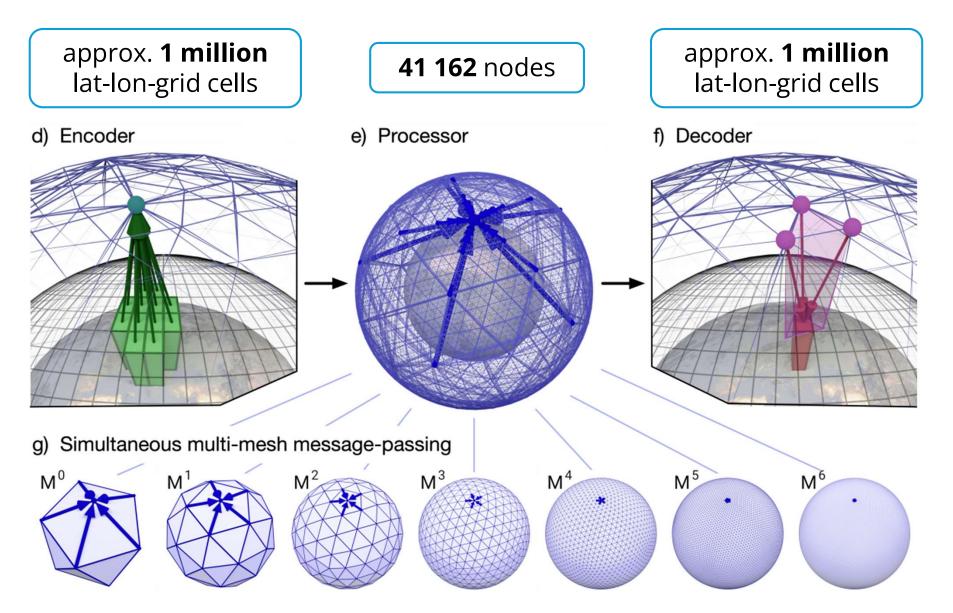
c) Roll out a forecast

17



Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1

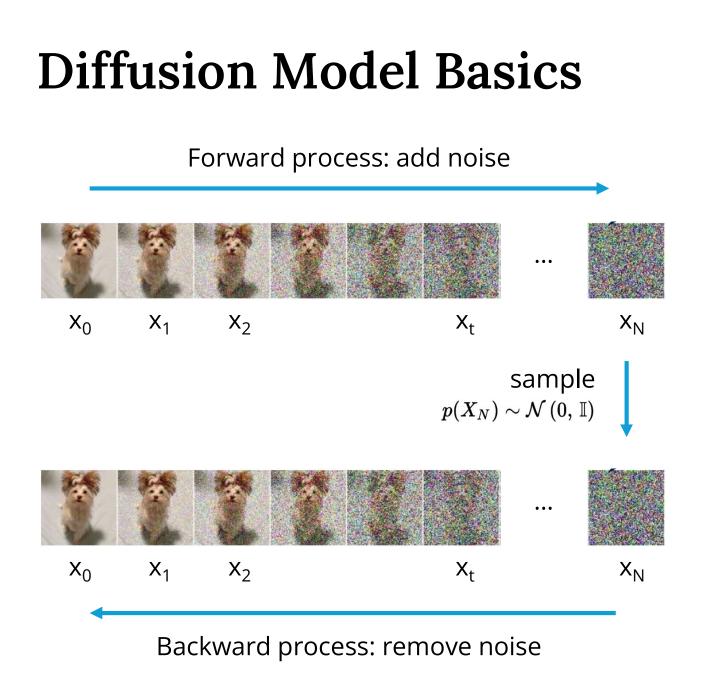
### **Compare: GraphCast Architecture**



Lam, R. et al. (2022). GraphCast: Learning skillful medium-range global weather forecasting. Figure 1

# Back to GenCast

# Diffusion is all you need

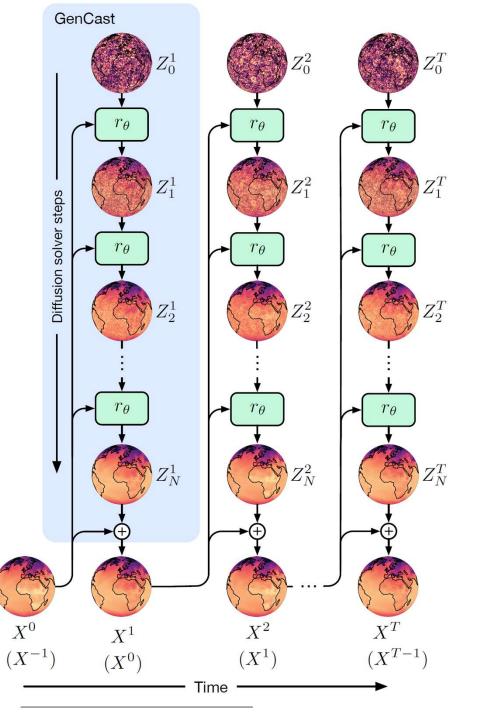


 $egin{aligned} p(x_0) \ p(x_1 \mid x_0) &= \mathcal{N}\left(x_0 \mid \sqrt{lpha_1} x_0, \, (1-lpha_1) \mathbb{I}
ight) \ p(x_2 \mid x_1, \, x_0) &= \mathcal{N}\left(x_1 \mid \sqrt{lpha_2} x_1, \, (1-lpha_2) \mathbb{I}
ight) \end{aligned}$  $p(x_0)$  $p(x_t \mid x_0) = \mathcal{N}\left(x_t \mid \sqrt{ar{lpha}_t} x_0, \, (1 - ar{lpha}_t) \mathbb{I}
ight)$  $x_{t-1} \sim q_{ heta}(x_{t-1} \mid x_t)$  $q_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}\left(x_{t-1} \mid \mu_{ heta}(x_t,\,t),\, \Sigma_{ heta}(x_t,\,t)
ight)$ 

determined by noise schedule

learned by NN

https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models



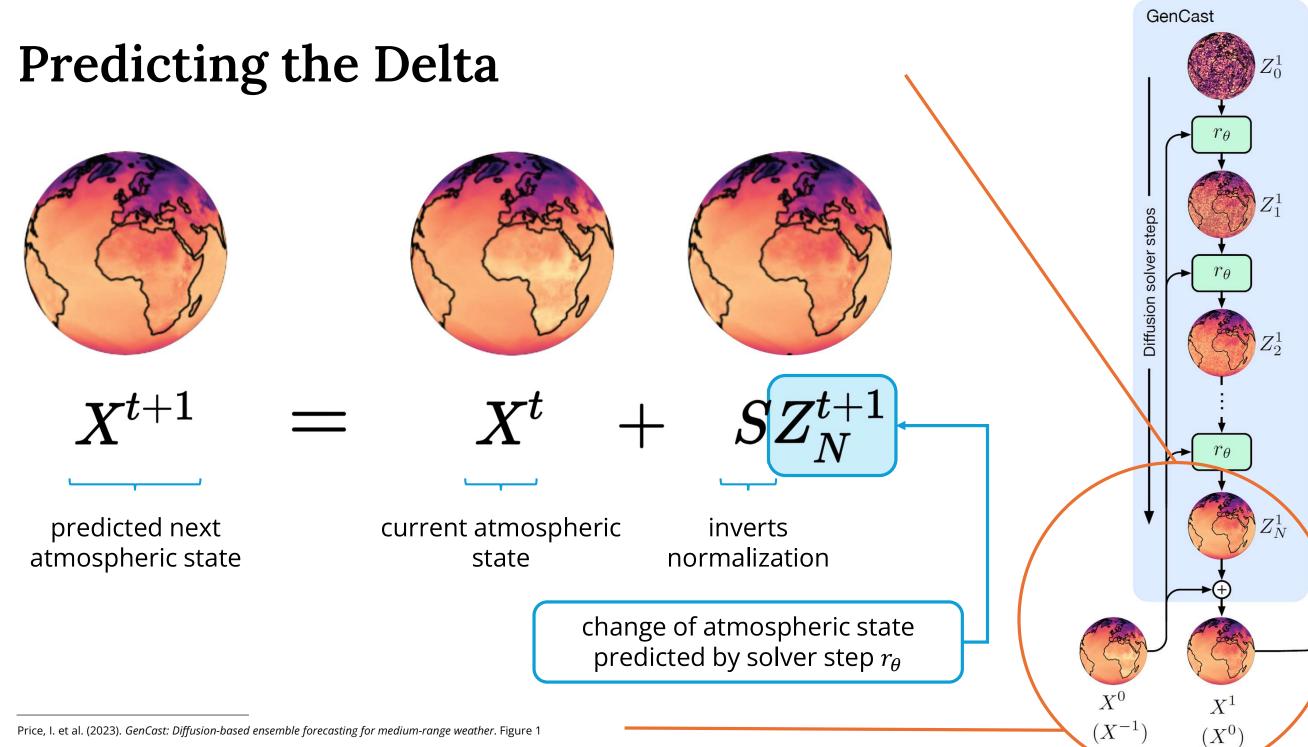
### **GenCast: Autoregressive Diffusion Forecast**

- 1. Sample residue  $Z_0^1$  from an isotropic normalized Gaussian
- 2. Denoise  $Z_0^1$  with one solver step  $r_{\theta}$  calling the denoiser  $D_{\theta}$  conditioned on the previous states  $X^0$  and  $X^{-1}$  to receive  $Z_1^1$
- 3. Repeat until fully denoised residue  $Z_N^1$  with N = 20
- 4. Invert normalization of residue by  $SZ_{20}^1$  and add to previous state  $X^0$  to receive the next state  $X^1$
- 5. Repeat steps 1. to 4. for T = 30 timesteps (12h each) to receive a 15-day forecast

 $X^t$ : atmospheric state at time  $t \, \epsilon \, [-1,T]$ 

 $Z_n^t$ : normalized sample after  $n \in [0, N]$  denoising steps at time  $t \in [-1, T]$  $r_{\theta}$ : solver step calling denoiser  $D_{\theta}$ 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1



Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 1

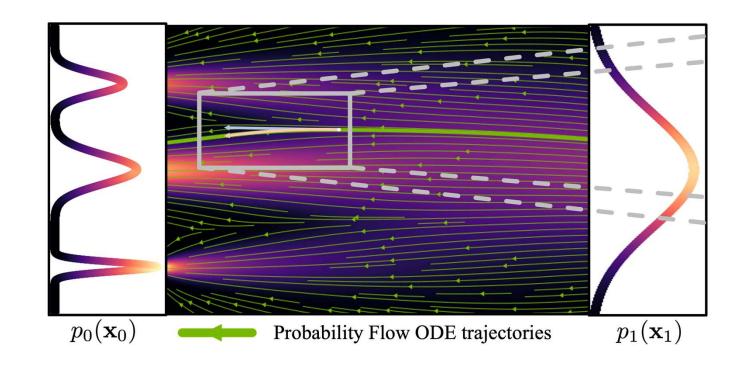
## **Probability Flow ODE**

#### **Basic Diffusion Model:**

- adding controlled noise at every iteration in forward process
- in backward process remove noise that is again sampled
- stochastic process (non-deterministic)
- can be described by stochastic differential equation (SDE)
- comparably slow

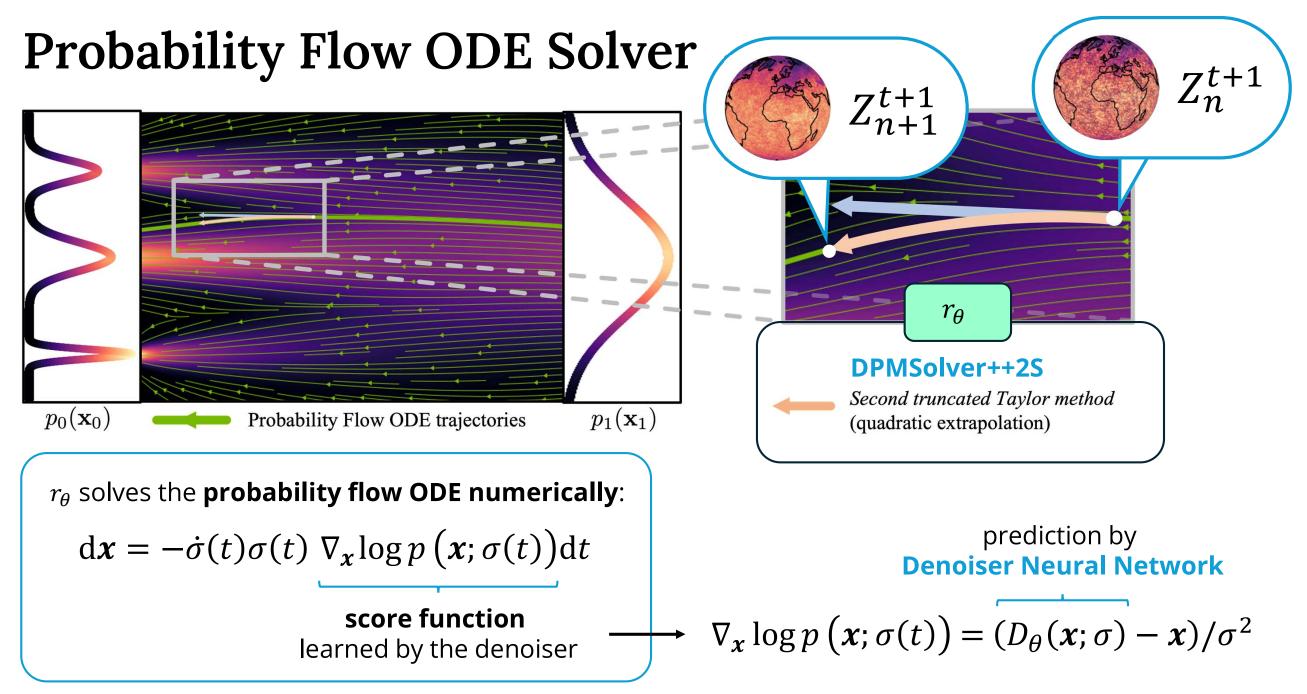
#### GenCast:

- Every diffusion SDE has a corresponding probability flow ODE describing the denoising process continuously
- can be solved with numerical ODE solvers
- GenCast uses DPMSolver++2S
- deterministic
- computationally efficient

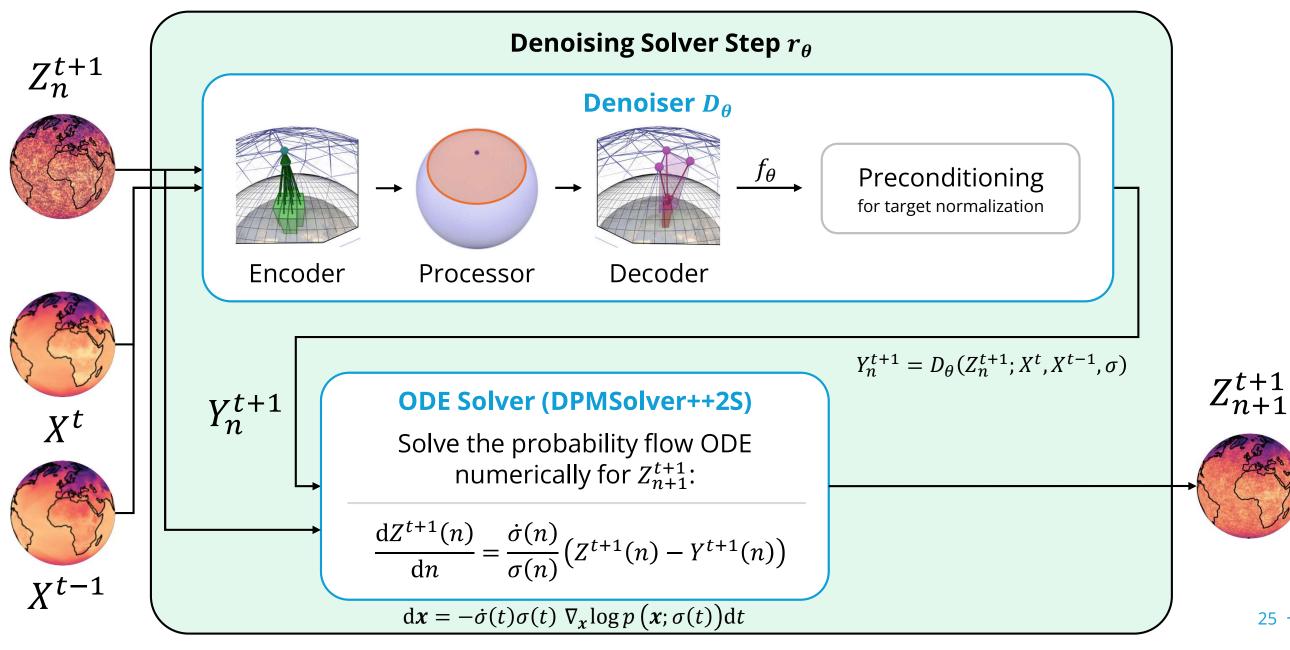




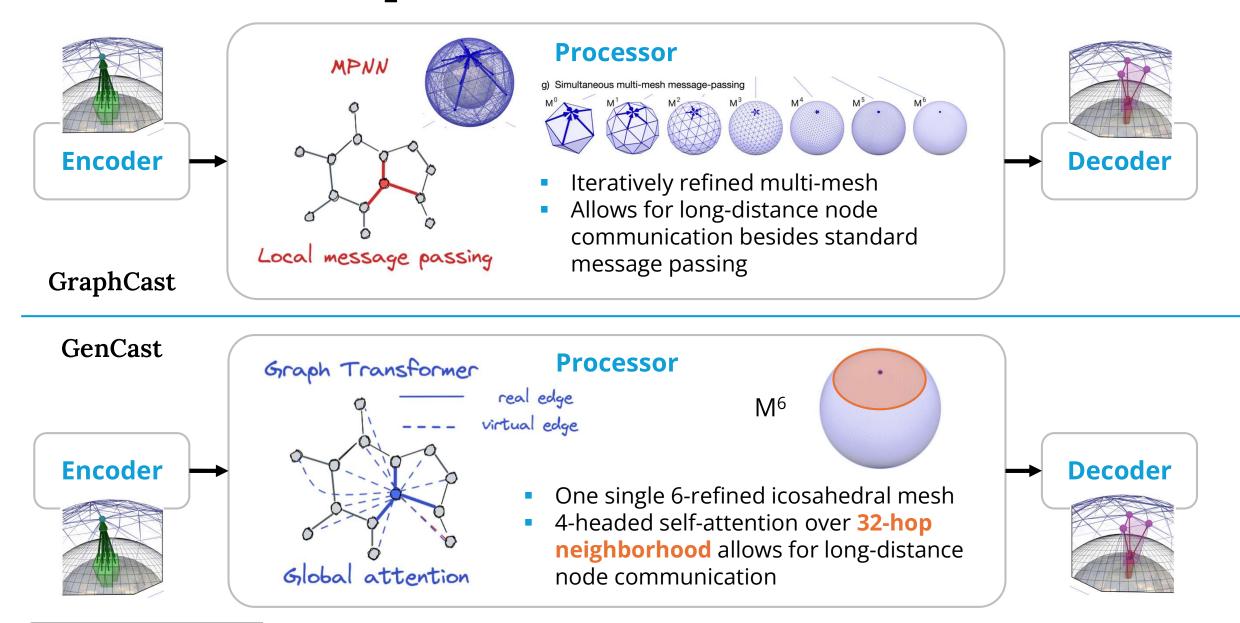
#### https://research.nvidia.com/labs/toronto-ai/GENIE/assets/genie\_pipeline.png



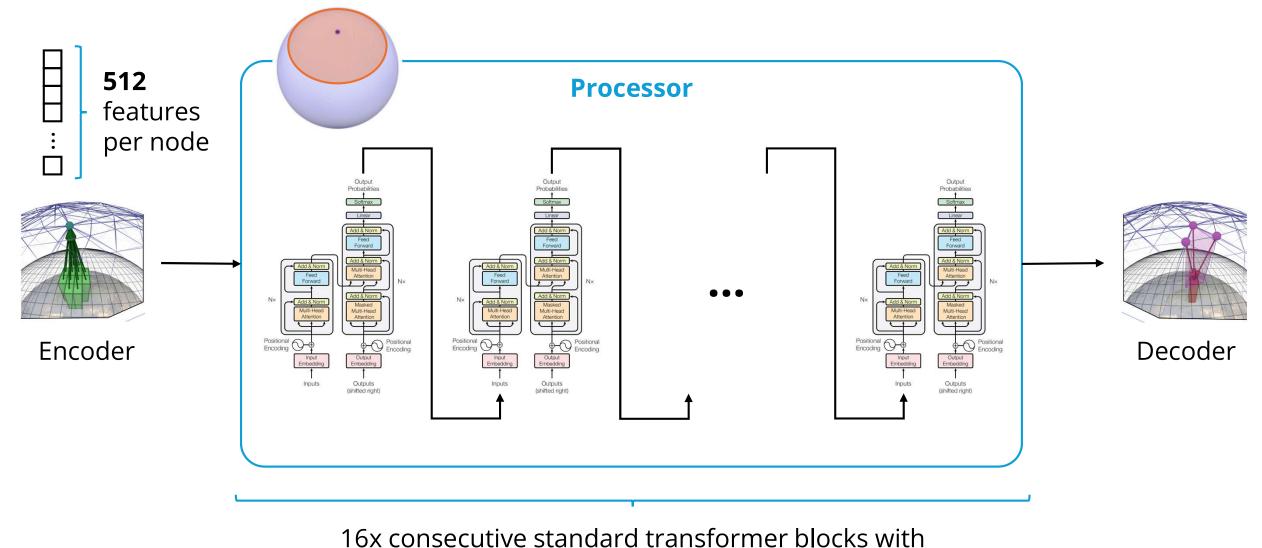
### GenCast: One Full Denoising Step



### Processor: GraphCast vs. GenCast



### **Processor: Graph Transformer Architecture**



4-head self-attention and feature dimension of 512

### Training the Denoiser $D_{\theta}$ : Loss Function

 Denoiser trained to predict Y<sup>t</sup> as expectation of noise-free target Z<sup>t</sup> through minimization of loss function:

$$\sum_{t \in \mathcal{D}_{\text{train}}} \mathbb{E} \left[ \lambda(\sigma) \frac{1}{|G||J|} \sum_{i \in G} \sum_{j \in J} w_j a_i (Y_{i,j}^t - Z_{i,j}^t)^2 \right]$$

 $t: ext{timestep index of training set } D_{ ext{train}} \ j \, \epsilon \, J: ext{ variable index (includes pressure level)}$ 

 $i \epsilon G$ : location index (lat & lon)

 $w_j$ : loss weight for variable j

 $a_i: ext{ area of lat-lon grid cell } i$ 

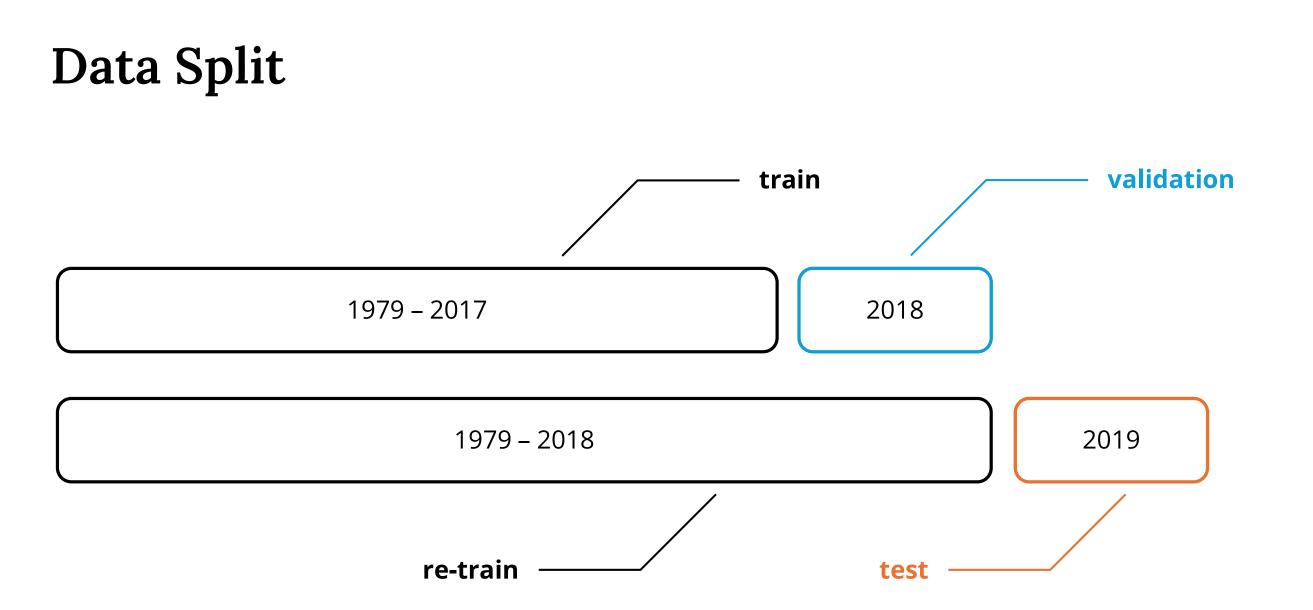
 $\lambda(\sigma)$ : loss weight for noise level  $\sigma$ 

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. D4

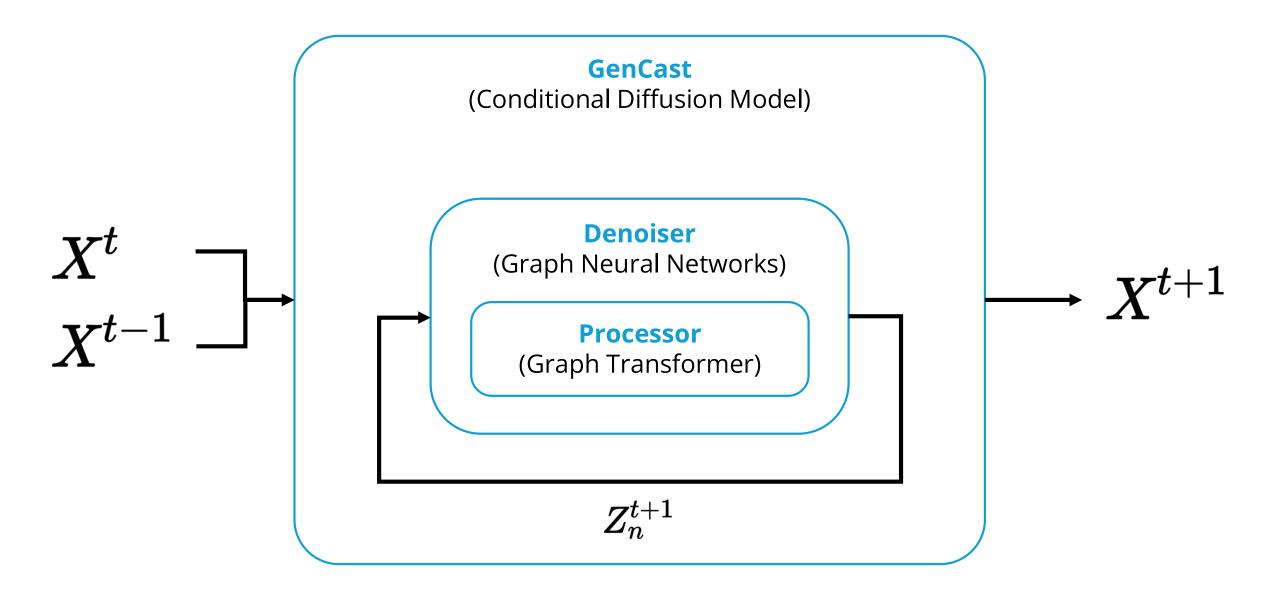
## **Training Schedule**

 The model is pre-trained at lower resolution before finetuning at actual resolution during the final training

|                       | Pre-Training          | <b>Final Training</b> |
|-----------------------|-----------------------|-----------------------|
| Number training steps | 2 million             | 64 000                |
| Spatial resolution    | 1°                    | 0.25°                 |
| Denoiser mesh         | 5-refined icosahedral | 6-refined icosahedral |
| Training hardware     | 32x TPUv5             | 32x TPUv5             |
| Training duration     | 3.5 days              | 1.5 days              |



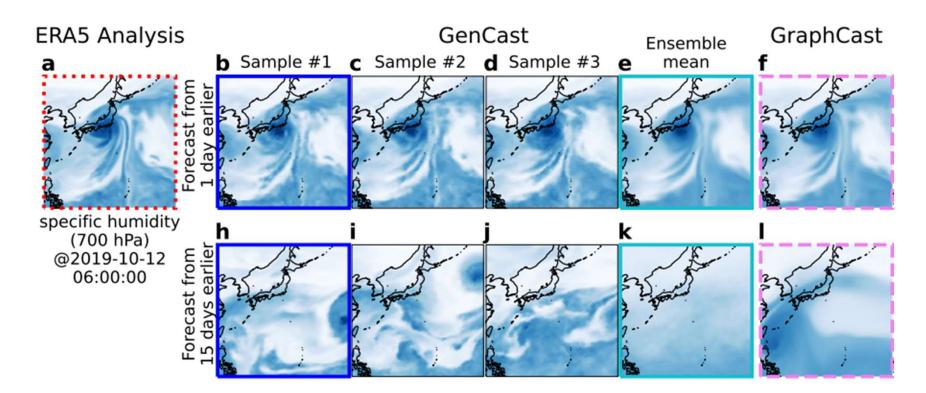
### **Overall Architecture**



# **Experiments and Results**

# Let's benchmark

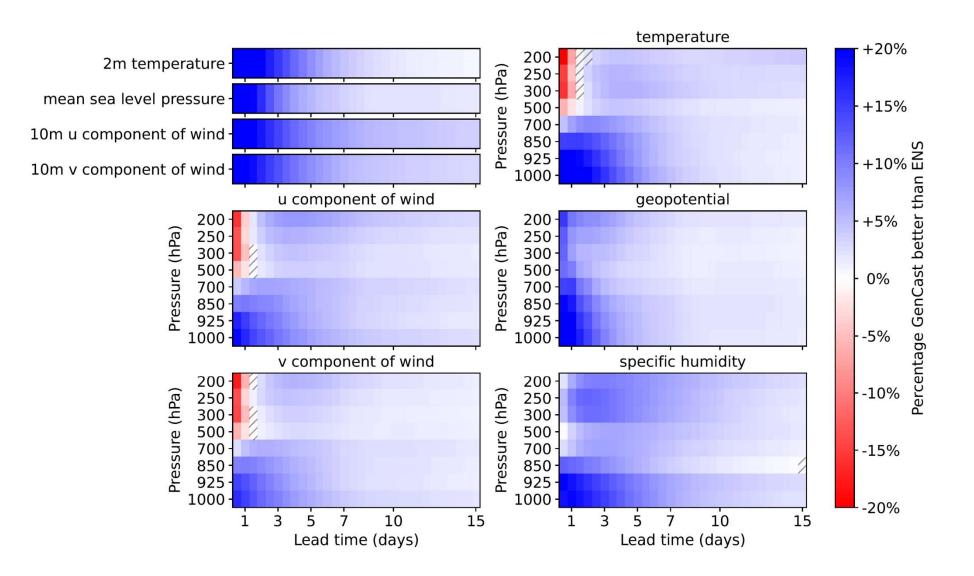
## GenCast vs GraphCast: Typhoon Hagibis 2019



 GenCast generates crisp samples even 15 days ahead GraphCast generates blurry forecasts resembling more the ensemble mean

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 2

### GenCast vs ENS



**1320** variable combinations

97.4% of variable combinations, GenCast outperforms ENS

# Strengths and Limitations

# Mighty but not almighty

## The Good ...

- very accurate
  - beats ENS in 97.4% of tested variable combinations

### fast

- only 8 minutes inference time for a single 15-day forecast (30 timesteps of 12h each) on a Cloud TPUv5 device
- Iower (computational) cost than ENS
- inherent uncertainty measure

## ... and the "Bad"

- predicting only one sample is not a "good" forecast as it is randomly sampled from distribution
- computationally more expensive than deterministic MLWP models (like GraphCast)
- still relies on NWP ensemble data assimilation for initial conditions
- temporal resolution limited: only 12h steps (compared to 6h steps for ENS)
- underlying dataset ERA5 is lower bound for spatial and temporal resolution
  - compare to: ENS recently got updated to 0.1° spatial resolution
- physical behavior only incorporated in initial condition
- Diffusion model only approximates underlying distribution

# Conclusion

# So what?

## **Potential and Outlook**

#### **Potential:**

- Application in industry promising (e.g. energy trading)
- Long-term forecasts potentially interesting

#### **Outlook:**

- Papers in AI-based weather forecasting are skyrocketing
- Many different architectures led to promising results
- ECMWF started adopting AI models
- Exploiting spherical properties
- Higher resolution data for re-training

# Questions?

# Let's talk about it

## Sources

#

## Sources

- I. Price, A. Sanchez-Gonzalez, F. Alet, T. R. Andersson, A. El-Kadi, D. Masters, T. Ewalds, J. Stott, S. Mohamed, P. Battaglia, R. Lam, M. Willson. GenCast: Diffusion-based ensemble forecasting for medium-range weather. *arXiv*, 2023.
- R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, P. Battaglia. GraphCast: Learning skillful medium-range global weather forecasting. *Science*, 382, 2023.
- T. Karras, M. Aittala, T. Aila, S. Laine. Elucidating the Design Space of Diffusion-Based Generative Models. *Conference on Neural Information Processing Systems*, 36, 2022.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- G. Nikolentzos, G. Dasoulas, M. Vazirgiannis. k-hop graph neural networks. *Neural Networks*, Volume 130, 2020. Pages 195-205.
- Video from the author: <u>https://www.youtube.com/watch?v=ez1pIFcU52s</u>

## Annex

# Further information needed?

## Hyperparameters: Diffusion Model Training

| Optimiser                  | AdamW (Loshchilov and Hutter, 2018) |
|----------------------------|-------------------------------------|
| LR decay schedule          | Cosine                              |
| Stage 1: Batch size        | 32                                  |
| Stage 1: Warm-up steps     | 1e3                                 |
| Stage 1: Total train steps | 2e6                                 |
| Stage 1: Peak LR           | 1e-3                                |
| Stage 1: Weight decay      | 0.1                                 |
| Stage 2: Batch size        | 32                                  |
| Stage 2: Warm-up steps     | 5e3                                 |
| Stage 2: Total train steps | 64000                               |
| Stage 2: Peak LR           | 1e-4                                |
| Stage 2: Weight decay      | 0.1                                 |

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Table D1.

## **Denoiser Preconditioning**

$$D_{\theta}\left(Z_{\sigma}^{t}; X^{t-1}, X^{t-2}, \sigma\right) := c_{skip}(\sigma) \cdot Z_{\sigma}^{t} + c_{out}(\sigma) \cdot f_{\theta}\left(c_{in}(\sigma)Z_{\sigma}^{t}; X^{t-1}, X^{t-2}, c_{noise}(\sigma)\right)$$

- $f_{\theta}$  is the neural network function
- $Z_{\sigma}^{t}$  is a noise-corrupted version of target  $Z^{t}$  at noise level  $\sigma$
- c<sub>in</sub>, c<sub>out</sub>, c<sub>skip</sub>, c<sub>noise</sub> are preconditioning functions

| Skip scaling $c_{\rm skip}(\sigma)$     | $\sigma_{ m data}^2 / \left( \sigma^2 + \sigma_{ m data}^2  ight)$     |
|-----------------------------------------|------------------------------------------------------------------------|
| Output scaling $c_{\text{out}}(\sigma)$ | $\sigma \cdot \sigma_{ m data} / \sqrt{\sigma_{ m data}^2 + \sigma^2}$ |
| Input scaling $c_{in}(\sigma)$          | $1/\sqrt{\sigma^2+\sigma_{ m data}^2}$                                 |
| Noise cond. $c_{noise}(\sigma)$         | $rac{1}{4}\ln(\sigma)$                                                |

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1

## **Noise Schedule**

$$\sigma_i := \left(\sigma_{max}^{\frac{1}{\rho}} + \frac{i}{N-1}(\sigma_{min}^{\frac{1}{\rho}} - \sigma_{max}^{\frac{1}{\rho}})\right)^{\rho} \quad \text{for } i \in \{0 \dots N-1\}$$

•  $\rho$  controls shortening of noising steps near  $\sigma_{min}$  in exchange for longer steps near  $\sigma_{max}$ 

•  $\sigma_{max} = \sigma_0$ ,  $\sigma_{min} = \sigma_{N-1}$ , are hyperparameters for the highest and lowest noise level

| Name                         | Notation          | Value, sampling | Value, training |
|------------------------------|-------------------|-----------------|-----------------|
| Maximum noise level          | $\sigma_{max}$    | 80              | 88              |
| Minimum noise level          | $\sigma_{min}$    | 0.03            | 0.02            |
| Shape of noise distribution  | ρ                 | 7               | 7               |
| Number of noise levels       | N                 | 20              |                 |
| Stochastic churn rate        | Schurn            | 2.5             |                 |
| Churn maximum noise level    | S <sub>tmax</sub> | 80              |                 |
| Churn minimum noise level    | $S_{tmin}$        | 0.75            |                 |
| Noise level inflation factor | Snoise            | 1.05            |                 |

#### Karras, T. et al. (2022). *Elucidating the Design Space of Diffusion-Based Generative Models*. Table 1

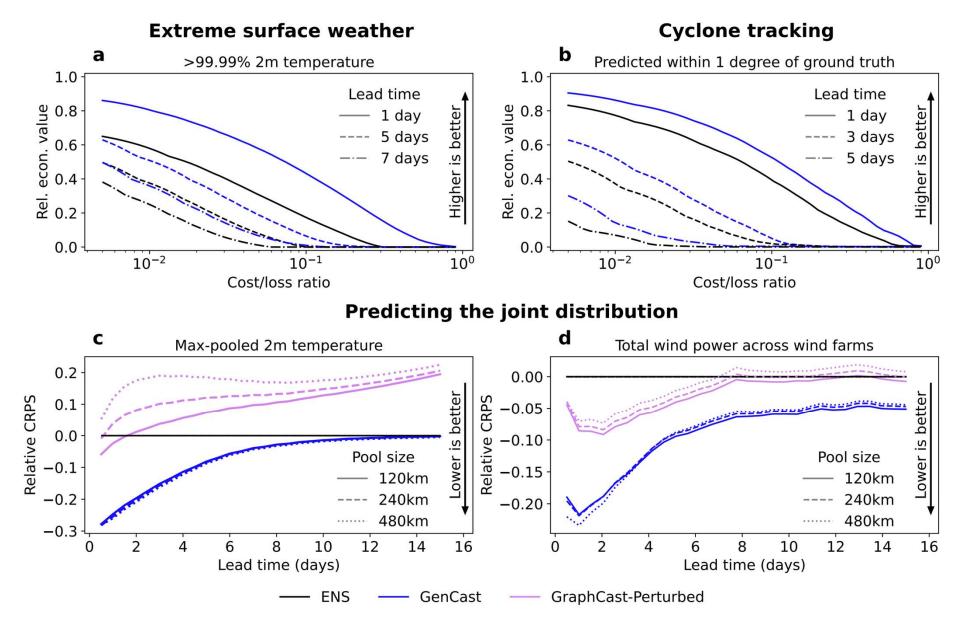
## **CRPS (Continuously Ranked Probability Score)**

The CRPS tries to measure goodness of probabilistic forecast by comparing the expected value of the forecast with the ground truth while incorporating the forecast's uncertainty.

$$CRPS := \frac{1}{K} \sum_{k} \frac{1}{|G|} \sum_{i} a_{i} \left( \frac{1}{M} \sum_{m} |x_{i,k}^{m} - y_{i,k}| - \frac{1}{2M^{2}} \sum_{m,m'} |x_{i,k}^{m} - x_{i,k}^{m'}| \right)$$

Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. E.2.1.

## **GenCast vs ENS: Extreme Weather**



Price, I. et al. (2023). GenCast: Diffusion-based ensemble forecasting for medium-range weather. Figure 3

## **Denoiser** Distribution

$$F^{-1}(u) = \left(\sigma_{max}^{\frac{1}{\rho}} + u(\sigma_{min}^{\frac{1}{\rho}} - \sigma_{max}^{\frac{1}{\rho}})\right)^{\rho}$$

- $F^{-1}(u)$  is inverse CDF of noise schedule  $\rightarrow$  sample by drawing  $u \sim U[0, 1]$
- $\rho$  controls shortening of noising steps near  $\sigma_{min}$  in exchange for longer steps near  $\sigma_{max}$
- $\sigma_{max} = \sigma_0$ ,  $\sigma_{min} = \sigma_{N-1}$ , are hyperparameters for the highest and lowest noise level

Karras, T. et al. (2022). Elucidating the Design Space of Diffusion-Based Generative Models. Table 1