

AlphaFold Meets Flow Matching for Generating Protein Ensembles

Sascha Benz

Technische Universität München

Munich, 05. November 2024

How is AlphaFold limited?

Fig. 2: Scheme of conformational change in a protein.

How is AlphaFold limited?

Fig. 3: Deinococcus radiodurans undergoing conf. change after being activated by light.

Overview

- 1. Motivation
- 2. Background
- 3. Methodology
- 4. Experiments
- 5. Strengths & Limitations
- 6. Conclusion

Background: Related Work

- Subsampling (most popular), mutagenesis, or clustering of MSA
 - De-facto standard methodology
- Sequence-to-structure generative models of protein ensembles
 - Perform poorer than MSA subsampling
- Learning generative models of Boltzmann distributions
 - Do not scale effectively

Flow Matching

Flow Matching

Fig. 5: Gaussian-to-Gaussian uniformly sampled pairings (left) vs. optimal transport (right).

Flow Matching

Fig. 6: Mixture of Gaussians uniformly sampled pairings (left) vs. optimal transport (right).

AlphaFold

Fig. 7: AlphaFold input and output

ESMFold

Fig. 8: ESMFold input and output.

Combination of Fold and Flow

• AlphaFold/ESMFold are regression models, not generative

Fig. 9: Making AlphaFold generative.

Combination of Fold and Flow

- Arbitrary output orientation; no propagation
 possible
 - \rightarrow Space of protein structures $R^{3N}/SE(3)$
 - \rightarrow Linear Interpolation after RMSD alignment
 - \rightarrow Loss: $FAPE^2(x_0, f_\theta(x_t, t))$

Fig. 10: Mirrored protein.

Flow Matching with AlphaFold2/ESMFold

Fig. 11: Flow Matching with AlphaFold step-by-step.

Input: Training examples of structures, sequences, and MSAs {(S_i, A_i, M_i)}

 $\begin{array}{l} \text{for all } (\text{S}_i, \text{A}_i, \text{M}_i) \text{ do} \\ & \quad \text{Extract } \text{x}_1 \leftarrow \text{BetaCarbons}(\text{S}_i) \\ & \quad \text{Sample } \text{x}_0 \sim \text{HarmonicPrior}(\text{length}(\text{A}_i)) \end{array}$

Input: Training examples of structures, sequences, and MSAs $\{(S_i, A_i, M_i)\}$

for all (S_i, A_i, M_i) do Extract $x_1 \leftarrow BetaCarbons(S_i)$ Sample $x_0 \sim HarmonicPrior(length(A_i))$ Align $x_0 \leftarrow RMSDAlign(x_0, x_1)$

Input: Training examples of structures, sequences, and MSAs $\{(S_i, A_i, M_i)\}$

for all (S_i, A_i, M_i) do Extract $x_1 \leftarrow BetaCarbons(S_i)$

Sample $x_0 \sim$ HarmonicPrior(length(A_i)) Align $x_0 \leftarrow$ RMSDAlign(x_0, x_1) Sample t ~ Uniform[0, 1] Interpolate $x_t \leftarrow t \cdot x_1 + (1 - t) \cdot x_0$

Input: Training examples of structures, sequences, and MSAs $\{(S_i, A_i, M_i)\}$

for all $(\mathsf{S}_i,\mathsf{A}_i,\mathsf{M}_i)$ do

Extract $x_1 \leftarrow BetaCarbons(S_i)$ Sample $x_0 \sim HarmonicPrior(length(A_i))$ Align $x_0 \leftarrow RMSDAlign(x_0, x_1)$ Sample t ~ Uniform[0, 1] Interpolate $x_t \leftarrow t \cdot x_1 + (1 - t) \cdot x_0$ Predict S'_i \leftarrow AlphaFold(A_i, M_i, x_t, t)

Input: Training examples of structures, sequences, and MSAs $\{(S_i, A_i, M_i)\}$

for all $(\mathsf{S}_i,\mathsf{A}_i,\mathsf{M}_i)$ do

Extract $x_1 \leftarrow BetaCarbons(S_i)$ Sample $x_0 \sim HarmonicPrior(length(A_i))$ Align $x_0 \leftarrow RMSDAlign(x_0, x_1)$ Sample $t \sim Uniform[0, 1]$ Interpolate $x_t \leftarrow t \cdot x_1 + (1 - t) \cdot x_0$ Predict $S'_i \leftarrow AlphaFold(A_i, M_i, x_t, t)$ Optimize loss $L = FAPE^2(S'_i, S_i)$

Data

Input: Sequence and MSA (A, M) Output: Sampled all-atom structure S⁴

Sample x₀ ~ HarmonicPrior(length(A))

x1

Input: Sequence and MSA (A, M) **Output**: Sampled all-atom structure S'

```
Sample x_0 \sim HarmonicPrior(length(A))

for n \leftarrow 0 to N - 1 do

Let t \leftarrow n/N and s \leftarrow t + 1/N

Predict S' \leftarrow AlphaFold(A, M, x_t, t)
```

x1

Input: Sequence and MSA (A, M) **Output**: Sampled all-atom structure S'

```
Sample x_0 \sim HarmonicPrior(length(A))

for n \leftarrow 0 to N - 1 do

Let t \leftarrow n/N and s \leftarrow t + 1/N

Predict S' \leftarrow AlphaFold(A, M, x_t, t)

if n = N - 1 then

return S'

end if

Extract x'_1 \leftarrow BetaCarbons(S')

Align x_t \leftarrow RMSDAlign(x_t, x'_1)
```


Input: Sequence and MSA (A, M) **Output**: Sampled all-atom structure S⁴

```
Sample x_0 \sim HarmonicPrior(length(A))

for n \leftarrow 0 to N - 1 do

Let t \leftarrow n/N and s \leftarrow t + 1/N

Predict S' \leftarrow AlphaFold(A, M, x_t, t)

if n = N - 1 then

return S'

end if

Extract x'_1 \leftarrow BetaCarbons(S')

Align x_t \leftarrow RMSDAlign(x_t, x'_1)

Interpol. x_s \leftarrow (s-t)/(1-t) \cdot x'_1 + (1-s)/(1-t) \cdot x_t
```


Fig. 11: Flow Matching with AlphaFold step-by-step.

Conformational States vs. Molecular Dynamics

Conformational states from Protein Data Bank (PDB) Molecular Dynamics (MD) data

PDB Metrics

PDB Ensembles

PDB Ensembles

MD Ensembles

MD Ensembles

Templates

- Protein sequence
- Single protein structure

- Without templates
- Protein sequence

• Distribution of protein ensembles

• Distribution of protein ensembles

MD Ensembles

MD Ensembles: Predicting Flexibility

	AlphaFlow-MD		MSA subsampling				AlphaFold	AFMD+Templates	
	Full	Distilled	32	48	64	256		Full	Distilled
Pairwise RMSD (= 2.90)	2.89	1.94	4.40	2.34	1.67	0.72	0.58	2.18	1.73
Pairwise RMSD r ↑	0.48	0.48	0.03	0.12	0.22	0.15	0.10	0.94	0.92
All-atom RMSF (=1.70)	1.68	1.28	5.38	2.29	1.17	0.49	0.31	1.31	1.00
Global RMSF r	0.60	0.54	0.13	0.23	0.29	0.26	0.21	0.91	0.89
Per-target RMSF r	0.85	0.81	0.51	0.52	0.51	0.55	0.52	0.90	0.88

Table 1: Comparing performance based on flexibility

MD Ensembles: Distributional Accuracy

	AlphaFlow-MD		MSA subsampling				AlphaFold	AFMD+Templates	
	Full	Distilled	32	48	64	256		Full	Distilled
Root mean \mathcal{W} 2-dist. \downarrow	2.61	3.70	6.15	5.32	4.28	3.62	3.58	1.95	2.18
\hookrightarrow Translation contrib. \downarrow	2.28	3.10	5.22	3.92	3.33	2.87	2.86	1.64	1.74
\hookrightarrow Variance contrib. \downarrow	1.30	1.52	3.55	2.49	2.24	2.24	2.27	1.01	1.25
MD PCA <i>W</i> 2-dist. ↓	1.52	1.73	2.44	2.30	2.23	1.88	1.99	1.25	1.41
Joint PCA ₩2-dist.↓	2.25	3.05	5.51	4.51	3.57	3.02	2.86	1.58	1.68

 Table 2: Comparing performance based on accuracy

MD Ensembles: Ensemble Observables

	AlphaFlow-MD		MSA subsampling				AlphaFold	AFMD+Templates	
	Full	Distilled	32	48	64	256		Full	Distilled
Weak contacts J ↑	0.62	0.52	0.40	0.40	0.37	0.30	0.27	0.62	0.51
Transient contacts J ↑	0.41	0.28	0.23	0.26	0.27	0.27	0.28	0.47	0.42
Exposed residue J ↑	0.50	0.48	0.34	0.37	0.37	0.33	0.32	0.50	0.47
Exposed MI matrix ρ ↑	0.25	0.14	0.14	0.11	0.10	0.06	0.02	0.25	0.18

Table 3: Comparing performance based on ensemble observables

MD Ensembles: Computation Time

Strengths

- Increase in diversity on static (PDB) and accuracy of dynamic ensembles (MD)
- Generalization to unseen proteins
- Computationally faster than MD
- Propose conformational structures (further evaluation via MD)
- Bridges gap between static structure prediction and dynamic nature of proteins

Limitations (Can not...)

- Generate dynamics
- \rightarrow Match long MD simulations
- Sample energy landscape of the protein

Conclusion

"AlphaFlow accelerates one specific application of MD but does it in a transferable manner.", Bowen Jing

References

- Conformational action with light: <u>https://www.aps.anl.gov/APS-Science-Highlight/2014/Lights-</u> <u>Conformational-Change-Action</u>
- Flow Marching: <u>https://doi.org/10.48550/arXiv.2210.02747</u>
- AlphaFold Meets Flow Matching for Generating Protein Ensembles: <u>https://doi.org/10.48550/arXiv.2402.04845</u>
- AlphaFold: <u>https://doi.org/10.1038/s41586-021-03819-2</u>
- MD: <u>https://www.drugdesign.org/chapters/molecular-dynamics/#introduction</u>
- AlphaFlow and ESMFlow on Github: <u>https://github.com/bjing2016/alphaflow</u>
- LDDT: <u>https://doi.org/10.1093/bioinformatics/btt473</u>
- Parts of this presentation were inspired by Bowen Jing's talk: <u>https://portal.valencelabs.com/events/post/alphafold-meets-flow-matching-for-generating-protein-ensembles-tlWJ4oC7Xrnim0s</u>

Figure References

- 1 https://foodscience-techn.blogspot.com/2014/07/structure-of-protein.html
- 2 https://www.researchgate.net/figure/Diagram-of-conformational-changes-during-the-transformation-of-a-

natural-prion-protein fig1 337289618

- 3 https://www.aps.anl.gov/APS-Science-Highlight/2014/Lights-Conformational-Change-Action
- 4 6 https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
- 7 9 adapted, 11 15, table 1-3 from <u>https://doi.org/10.48550/arXiv.2402.04845</u>

10 adapted from https://foodscience-techn.blogspot.com/2014/07/structure-of-protein.html