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Proteins
Definition

■ Protein Complex biomolecules that perform a vast array of functions in living organisms.
Comprised of long chains of amino acids, proteins fold into unique 3D shapes essential
for their specific functions.

■ Amino Acid Sequence represents the linear order of amino acids in a protein

■ Backbone The chain of repeating atoms (N, C) that forms the main structure of the
protein

■ Residues Individual amino acids, including their unique side chains, attach to the
backbone and determine the protein’s properties and interactions.

■ Multiple Sequence Alignment (MSA) A method to align sequences of homologous
proteins to identify conserved regions, which often indicate structurally or functionally
important areas.
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The Protein Folding Problem
Importance of protein structure prediction

■ Structures of around 100,000 unique proteins determined by experiments

■ Only represents a small fraction of the billions of known protein sequences

■ Months to years of painstaking effort required

■ Accurate computational approaches are needed

■ Protein Folding Problem
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The Protein Folding Problem
Existing methods

■ Two complementary paths of predicting 3D protein structures
□ Physical interactions
□ proved highly challenging for even moderate-sized proteins
□ Evolutionary history
□ the constraints on protein structure are derived from the evolutionary history of proteins

■ Despite these advances, both approaches face the same problem

■ When no homologous structure available accuracy falls short
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AlphaFold2’s Breakthrough

■ Near experimental accuracy in a majority of cases

■ Median backbone accuracy of 0.96 Å r.m.s.d

■ root-mean-square deviation at 95% residue coverage (95% confidence interval =
0.85–1.16 Å)

■ As comparison, the width of a carbon atom is approximately 1.4 Å.

■ All-atom accuracy was 1.5 Å r.m.s.d.95

■ Scalable to very long proteins with accurate domains and domain-packing

■ Finally, able to provide precise, per-residue estimates of its reliability

■ Innovative design of architecture
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AlphaFold2’s Breakthrough
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AlphaFold2’s Breakthrough
Innovation

■ Jointly processes multiple sequence alignments (MSAs) and pairwise feature

■ Iteratively refine structural hypotheses

■ Inspect key components that matters
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AlphaFold2’s Breakthrough
Key Components

■ Multiple sequence alignments (MSA) and Pairwise features

■ Evoformer

■ Structure modules

■ Recycling

■ Self-distillation
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Step by Step Inspection

In general, the architecture can be divided in three parts:
■ Feature Extraction

■ Encoder(Evoformer)

■ Decoder(Structure module)
Each of which contains rich details. We will inspect step by step.
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Feature Extraction

■ Input sequence of human DNA is delivered simultaneously into two representations:
MSA representation and Pairing representations

■ Jointly embed multiple sequence alignments (MSAs) and pairwise features

■ Pair residues features

Zeyu Li | AlphaFold2 | 20/10/2024 10



Feature Extraction
Motivation

■ Goal: Directly predicting the 3D coordinates of all heavy atoms for a given protein

■ Not only serial residues information of a given sequence

■ But also relationships between different residues
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Feature Extraction
Multiple Sequence Alignments

■ The MSA representation: Nseq × Nres array

■ Nseq: number of sequences

■ Nres: number of residues

■ Randomly selecting representative sequences from a full set(Genetic Database)

■ Associating each sequence with its nearest representative

■ “Clustering” with random cluster centres ensures similarity of sequences to some extend
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Feature Extraction
Pair Residues Features

■ The residue pairs representation: Nres × Nres array

■ Templates store structural information about residues pairing existing
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Evoformer

■ Input and output of the same size

■ Exchange information within MSA
and pairs

■ (s, r, c) refers to sequence, residues
and channels/features, recalling
Multi-head Attention in Transformer
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Evoformer
Architecture perspective

■ Upper-left sub-net for MSA sequence representation

■ Bottom-right sub-net for pair representation

■ Both make use of MSA and pair-wise information
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Evoformer
MSA

■ Forward pass design

■ Split into row-wise and column-wise training

■ MLP transition
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Evoformer
MSA row-wise gated self-attention
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Evoformer
MSA Transition

■ 2-layer MLP as the transition layer

■ Intermediate number of channels expands the channels by a factor of 4
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Pairwise Representation

■ Goal: Amino acids be pairwise representable in as a 3D structure
■ Many constraints must be satisfied: e.g. the triangle inequality on distances
■ Pairwise Representation must incorporate these constraints
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Pairwise Representation
Illustration of Pair in Graph

■ Recall GNN, represented as weighted vectors
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Pairwise Representation
Triangle self-attention around nodes

■ Recall GNN’s message passing

■ In particular, given i, j, k three nodes, update the information of node i and node j to
node k(starting node), or vice versa(ending node)
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Pairwise Representation
Triangle self-attention in algorithm

ah
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ij ◦

∑
k

ah
ijkvh
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■ Inspect self-attention around starting node

■ Element-wise Multiplication with gate

■ A Combination of attention and message passing

■ gh
ij represents the output gating.

■ Overall, very similar to MSA attention we’ve seen earlier.

Zeyu Li | AlphaFold2 | 20/10/2024 22



Pairwise Representation
Triangle self-attention around starting node
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Pairwise Representation
Triangle self-attention using edges

■ Similar as before, update the missing third edge using two edges adjacent

■ Given edges ik, jk, update edge ij using attention
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Pairwise Representation
Triangle self-attention using edges

gij = σ(Linear(zij))
z̃ij = gij ◦ Linear(LayerNorm(

∑
k

aik ◦ bjk))

■ gh
ij represents the output gating.

■ Element-wise Multiplication with each other and gate

■ Can be regarded as message passing across edges

■ Initially designed to simplified the computation

■ In the end proved to be indispensable.

■ Make the prediction more accurate
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Decoder
Design Principle

■ To represent a protein structure in 3D space, what problem do we need to solve?

■ Using the pair representation and the original sequence row (single representation)

■ First we need 3D backbone structure of the MSA representation

■ Nres independent rotations and translations, each with respect to the global frame
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Decoder
Design Principle

■ Aside from pure geometry, exact biological constraints are enforced in the
post-prediction relaxation of the structure

■ How?

■ Designing context-specified violation loss term

■ e.g. Satisfaction of the peptide bond geometry is encouraged during fine-tuning by a
violation loss term

■ To simplify the representations, coordinates are separated int o two frame: Global Frame
and Local Frame

■ Local Frame: Translations and Rotations suffice. Or in the words of paper, “rigid
motions")

■ Why?
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Decoder
Predicting the structure

■ Recall the structure of LSTM

■ Explicit building of backbone pipe (analog
to cell states in LSTM)

■ Key Component: IPA modules
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Decoder
Invariant point attention (IPA)

ah
ij = softmaxj
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■ i, j represents two different residues

■ Ti, Tj "rigid motions" of corresponding residues

■ wc empirical constants w.r.t. query points, and γh another constant w.r.t heads
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IPA v.s. Regularization

■ We compare the attention equation with regularization terms to show their similarities

■ R(f) = Ω(f) + C
∑m

i=1 ℓ(f(xi), yi)
■ Ω(f) structural risk: designed to append the character we want the model to have

■ Here, Affinity computation term

■ The farther two residues lie after rigid transformations, the less likely they are similar to
each other

■ To some extend, very similar to the concept of reducing overfitting
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IPA
Proof of Invariance

L2-norm of a vector is invariant under rigid transformations
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=
∥∥∥Tglobal ◦

(
Ti ◦ q⃗hp

i − Tj ◦ k⃗hp
j

)∥∥∥2

=
∥∥∥Ti ◦ q⃗hp

i − Tj ◦ k⃗hp
j

∥∥∥2
.
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FAPE Loss
Frame aligned point error

■ Compares the predicted atom positions to the true positions under many different
alignments

■ Compute the distance of all predicted atom positions xi from the true atom positions
■ Penalized with a clamped L1 loss
■ A strong bias for atoms to be correct relative to the local frame of each residue and

hence correct with respect to its side-chain interactions
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Interpreting neural network
Ablation results
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Interpreting neural network
Effect of MSA information and cross-chain contacts

X-axis represents the median per-residue
Neff on logarithmic scale.
Y-axis represents the IDDT-Cαscore
Shaded areas around each curve represent
the 95% confidence intervals

Zeyu Li | AlphaFold2 | 20/10/2024 34



Outline

1 Introduction to AlphaFold2

2 Technical Insights

3 Experiment Results

4 Conclusion

Zeyu Li | AlphaFold2 | 20/10/2024 34



Discussion

■ Rely highly on MSA information

■ High-accuracy predictions for homomers, not good enough for hetero-complexes

■ Focus on the paper’s wise modification of normal transformer

■ Still many details not covered in this slides, e.g. data augmentation with noisy student
self-distillation

■ Seek for Supplmentary Information of the paper for implementation details if interested.

■ Most of the stuff based on my own understanding, do not hesitate to point out!
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Q & A

Q & A

Feel free to ask any questions!

Zeyu Li | AlphaFold2 | 20/10/2024 36



Thanks for your attention!
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