Seminar: Foundation Models for Computer Vision

Tarun Yenamandra, Dominik Schnaus
Computer Vision Group
Technical University of Munich
How can I access these slides?

• **Option 1 (preferred):** seminar web page
 - https://cvg.cit.tum.de/teaching/ws2024/fmcv
 - **Password for the materials page:** fmcv24neu
 - Material page will go online after this pre-meeting

• **Option 2:** contact organizers
 - fmcv-ws24@vision.in.tum.de
 - **Only use this option if you forgot the password**
Outline

- General Information
 - About the Seminar
 - Registration

- Possible Topics
 - Self-Supervised Representation Learning in Computer Vision
 - Multi-Modal 2D Foundation Models
 - 3D Foundation Models

- Questions
Outline

○ General Information
 ○ About the Seminar
 ○ Registration

○ Possible Topics
 ○ Self-Supervised Representation Learning in Computer Vision
 ○ Multi-Modal 2D Foundation Models
 ○ 3D Foundation Models

○ Questions
How is the seminar organized?

- Seminar meetings: Talks and discussion
 - **Block course**, course schedule will be announced later
 - Location: In presence (if required also virtual, on Zoom)
 - In case of special circumstances please let us know and we will find a solution
 - Each session will consist of two talks which are held in English
 - **Attendance is mandatory!**

- Talk preparation / contact with supervisor
 - Schedule meetings with your supervisor
 - Four weeks before talk: meet supervisor for questions (optional, but recommended)
 - Two weeks before talk: meet supervisor to go through slides (optional, but recommended)
 - One week before talk: send slides to your supervisor (mandatory)
 - Two weeks after talk: submit your report via email (mandatory)
What about the presentation?

- General set-up:
 - Duration: 20–25 minutes talk + 10–15 minutes discussion
 - Make sure to finish on time - not too early and not too late!
 - Rule of thumb: 1–2 minutes per slide → 10–20 slides
 - Do not put too much information on the slides!

- Recommended structure (talk):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary
What about the discussion after each talk?

- Discussion afterwards **will** influence your grade
- Ask questions!
- There are **no** stupid questions!
What about the final report?

• General set-up:
 – Use \LaTeX template provided on web page
 – Length: 3-4 pages
 – Send final report as pdf by email to fmcv-ws24@vision.in.tum.de
 – Submission deadline: Two weeks after talk

• Recommended structure (main text only):
 – Introduction
 – Method description
 – Experiments and results
 – Discussion of results
 – Summary
Outline

◦ General Information
 ○ About the Seminar
 ○ Registration

◦ Possible Topics
 ○ Self-Supervised Representation Learning in Computer Vision
 ○ Multi-Modal 2D Foundation Models
 ○ 3D Foundation Models

◦ Questions
How do you register for the seminar?

• **Step 1:** Official registration via TUM matching system

 − Go to https://matching.in.tum.de

 − Register for seminar with the title *Foundational Models for 2D and 3D Computer Vision*

• **Step 2:** Personal registration via email

 − In the list of papers on the web page, select your three favorites

 − Write an email ranking these three favorites to the seminar email address

 − Email subject: “[FMCV] application [your name]”

 − Include information about related lectures / courses you have taken so far

 − We do **not** need your CV or a motivation letter!

 − Registrations without email / emails with missing information will be ignored!

• **Deadline** for both registrations: July 25th, 2024
How do you register for the seminar?

Example registration email:

```
To: fmcv-ws23@cvpr.in.tum.de
Cc: 
Subject: [FMCV] application [your name]

Hi Tarun and Dominik,

I would like to present one of the following papers:
  1. Paper A
  2. Paper B
  3. Paper C

In the past, I have taken these related courses:
  • CV2 (winter 22)
  • I2DL (summer 23)

Best,
```
How do we select candidates and assign papers?

• Candidate selection
 – Only students registered in the matching system **AND**
 emails containing all required information will be considered
 – Among students meeting the formal criteria, selection will be random
 – Note that if you have not taken any related course, you must be willing to invest a lot of work to
 learn the required basics
 – You will get notified by the matching system about the decision

• Paper assignment
 – A formal paper list will be published on the materials page in the next weeks
 – Papers are assigned after the participant list is finalized
 – We give our best to accommodate your preference list in the assignment
Outline

○ General Information
 ○ About the Seminar
 ○ Registration

○ Possible Topics
 ○ Self-Supervised Representation Learning in Computer Vision
 ○ Multi-Modal 2D Foundation Models
 ○ 3D Foundation Models

○ Questions
Contrastive Methods

- Minimizes/maximizes the embedding distance of positive/negative pairs
- One of the first self-supervised methods for computer vision

Source: Barlow twins: Self-supervised learning via redundancy reduction
Masked Image Methods

- Predicts the masked patches
- Motivated by the success of masking in LLM

Source: Masked autoencoders are scalable vision learners
Self-Distillation Methods

- Uses an exponential moving average of the network weights as supervision
- Doesn’t require negative samples

Source: Emerging properties in self-supervised vision transformers
Video Methods

- Uses the temporal consistency in videos

Source: V-JEPA: Latent video prediction for visual representation learning
Outline

○ General Information
 ○ About the Seminar
 ○ Registration

○ Possible Topics
 ○ Self-Supervised Representation Learning in Computer Vision
 ○ Multi-Modal 2D Foundation Models
 ○ 3D Foundation Models

○ Questions
Visual Language Models

- Learns a shared embedding space of visual and language models

Source: Learning transferable visual models from natural language supervision
Segmentation Models

- Uses different user inputs to segment the object of interest
- Can be extended to work with language inputs

Source: Segment anything
Generative Models

- Produces realistic images from text prompts
- Often uses diffusion models

Source: Hierarchical text-conditional image generation with clip latents
Outline

○ General Information
 ○ About the Seminar
 ○ Registration

○ Possible Topics
 ○ Self-Supervised Representation Learning in Computer Vision
 ○ Multi-Modal 2D Foundation Models
 ○ 3D Foundation Models

○ Questions
3D Foundation Models

- Produces realistic 3D models from text prompts

Source: Marigold: Repurposing diffusion-based image generators for monocular depth estimation
Questions?

Reminder:

- **Web page**: https://cvg.cit.tum.de/teaching/ws2024/fmcv
- **Password**: fmcv24neu
- **Contact**: fmcv-ws24@vision.in.tum.de