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Transfer Learning

Daniel Cremers Introduction to Deep Learning



ResNet

000T 2

jood Sne

TT5 ‘MUO2 EXE

TTS ‘AUOD EXE

TG "AUOD EXE

ZTS "AUDD EXE

A
2/ 'ZT5 ‘AU0D EXE

.E

[ oscmooe |
[ ssrmoe |

957 ‘AUDI EXE

ResNet-152:
O00OM parameters

957 "AUCD EXE

95T NUOD EXE

A
2/ '95¢ 'AUDD EXE

BTT “AUOI EXE
BTT ‘NIOD EXE

BTT ‘MU02 ENE

ST "AUOD EXE

BT 'AUDI EXE

T[T meee |
2/ "RET ‘AUDD EXE

e

z/jvod

7/ 79 ‘o pxp

afew

|enpisad JoAR|-E

[He et al. CVPR'16] ResNet

Introduction to Deep Learning

Daniel Cremers



Transfer Learning

« Training your own model can be difficult with limited
data and other resources

ed,

« [tis alaborious task to manually annotate your
own training dataset

« \Why not reuse already pre-trained models?

Daniel Cremers Introduction to Deep Learning



Transfer Learning
Distribution Distribution

Large dataset Small dataset

L Use what has been —|
learned for another
setting

Daniel Cremers Introduction to Deep Learning




Transfer Learning for Images

Low-level Middle-level Top-level
feature feature feature

[Zeiler al, ECCV'14] Visualizing and Understanding Convolutional Networks

Daniel Cremers Introduction to Deep Learning 6



Trainedon  Transfer Learning

ImageNet

FC-1000
FC-4096

1k

Conv-512
Conv-512

Feature
Conv-256 g .
Conv-256 extraction

MaxPool

!

Conv-128

- [Donahue et al., ICML'14] DeCAF,
[Razavian et al.,, CVPRW'14] CNN Features off-the-shelf
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Trainedon  Transfer Learning

ImageNet
Creen  Decision layers
==

-

MaxPool J
Conv-512 j

ez | =P3rts of an object (wheel, window)
MaxPool
Conv-512 ‘ -
Conv-512 | ™
MaxPool \

2:-“,.:?,: - [T Simple geometrical shapes (circles, etc)

rny pr— ey pe— p— g— — go— po—

o
[_C_"D_V:!?LJ -
|_Conv-128 |
T | - EAQES
| Conv-64 |
| Conv64 |

- [Donahue et al, ICML'14] DeCAF,
[image ] [Razavian et al.,, CVPRW'"14] CNN Features off-the-shelf
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Trainedon  Transfer Learning

ImageNet

TRAIN _ New dataset

with C classes

~ FROZEN

- [Donahue et al., ICML'14] DeCAF,
[Razavian et al.,, CVPRW'14] CNN Features off-the-shelf

Daniel Cremers Introduction to Deep Learning 9
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Transfer Learning

f the dataset is big
enough train more
layers with a low
learning rate

Daniel Cremers

TRAIN

FROZEN =

Introduction to Deep Learning

i

Conv-512

i

Conv-512
Conv-512
MaxP:

1

MaxPool

i

10



When Transfer Learning Makes Sense

« Whentask T1and T2 have the same input (e.g. an
RGB image)

« \X/hen you have more data for task T1 than for task T2

« \Xhen the low-level features for T1 could be useful to
learn T2

Daniel Cremers Introduction to Deep Learning 11



TUTi

Representation
[ earning
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earning Good Features

e Good features are essential for successful machine
learning

o (Supervised) deep learning depends on training data
used: iInput/target labels

« Change in inputs (noise, irregularities, etc.) can result
N drastically different results

Daniel Cremers Introduction to Deep Learning



Representation Learning

« Allows for discovery of representations required for
various tasks

« Deep representation learning: model maps input X to
output Y

Daniel Cremers Introduction to Deep Learning 14



Deep Representation Learning

« Intuitively, deep networks learn multiple levels of
apstraction

A _|Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier
4 A 1 N

Daniel Cremers Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] 15



How to Learn Good Features?

e Determine desired feature invariances

e Teach machines to distinguish between similar and

dissimilar things
Match the correct animal

https.//amitness.com/2020/03/illustrated-simclr/

Daniel Cremers Introduction to Deep Learning 16




How to Learn Good Features?

Representation

Data
Augmentation

Original
Image

Daniel Cremers

Maximize
similarity

Zj

hj

Encoder .| Dense Relu Dense -

Encoder — [ T - pense Relu Dense »[ 1] —
hj

Xj
Transformed Base Encoder Projection Head
Images f(.) a(.)
Downstream
tasks

[Chen et al,, ICML20] SICLR,
Introduction to DebitpsA/amitness.com/2020/03/illustrated-simclr/
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Apply to Downstream Tasks

Usage on downstream tasks

Representation
o ‘ H hj \
E 1 Encoder [T

Encoder

Base Encoder

f(.)

[Chen et al., ICML'20] SICLR,

https.//amitness.com/2020/03/illu
classification, detection, ... strated-simclr/
Daniel Cremers Introduction to Deep Learning 18



Transfer & Representation Learning

« Transfer learning can be done via representation
learning

« Effectiveness of representation learning often
demonstrated by transfer learning performance (but
also other factors, e.g., smoothness of the manifold)

Daniel Cremers Introduction to Deep Learning



TUTi

Recurrent Neural
Networks

Daniel Cremers Introduction to Deep Learning



Processing Sequences

« Recurrent neural networks process sequence data

« |nput/output can be sequences

Daniel Cremers Introduction to Deep Learning
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RNNSs are Flexible

one to one

Classical neural networks for image classification

Source: http.//karpathy.github.io/2015/05/21/rnn-effectiveness/
Daniel Cremers Introduction to Deep Learning 22



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Daniel Cremers

RNNSs are Flexible

one to many

Image captioning

Source: http//karpathy.qgithub.io/2015/05/21/rnn-effectiveness/

Introduction to Deep Learning
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RNNSs are Flexible

many to one

Language recognition

Source: http.//karpathy.github.io/2015/05/21/rnn-effectiveness/
Daniel Cremers Introduction to Deep Learning 24



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

many to many

Machine translation

Source: http.//karpathy.github.io/2015/05/21/rnn-effectiveness/
Daniel Cremers Introduction to Deep Learning 25



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

many to many

Event classification

Source: http.//karpathy.github.io/2015/05/21/rnn-effectiveness/
Daniel Cremers Introduction to Deep Learning 26



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

one to one one to many many to one many to many many to many

Event classification

Source: http.//karpathy.github.io/2015/05/21/rnn-effectiveness/
Daniel Cremers Introduction to Deep Learning 27



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Basic Structure of an RNN

« Multi-layer RNN

Outputs
f ¢+ 8 3+ % 4
fF ¢+ F ¢ F %8 |
,,,,,, Hidden
e i vl sl e states
S i T T R Wl
INputs

Daniel Cremers Introduction to Deep Learning 28



Basic Structure of an RNN

« Multi-layer RNN

Outputs

00 T B YA M
The hidden state @ @ = = = = = =
will have its own f ¢+ £ F ¢t ¢ i
internal dynamics | = = = o laden

| t 1+ ff ¢ | Stles
More expressive AR
model |
INnputs

Daniel Cremers Introduction to Deep Learning



Basic Structure of an RNN

« \We want to have notion of 'time" or "'sequence’

(b

T A =041+ Oyx,
Hidden L A _] / ‘
state Previous input
nidden
State

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning



Basic Structure of an RNN

« \We want to have notion of 'time" or "'sequence’

(b

T At — OCAt_l + Bxxt

Hidden L A _]

state

Parameters to be learned

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 31



Basic Structure of an RNN

« \We want to have notion of 'time" or "'sequence’

Qutput @

]

At — BCAt—l + Hxxt

Hidden L

state

A

B

ht — HhAt

Daniel Cremers

Note: non-linearities
ignored for now

[Olah, https.//colah.github.io 15] Understanding LSTMs

Introduction to Deep Learning



Basic Structure of an RNN

« \We want to have notion of 'time" or "'sequence’

Qutput @

A, =64, t

]

Hidden L

state

A

3

Daniel Cremers

b

Same parameters for each
time step = generalization!

[Olah, https.//colah.github.io 15] Understanding LSTMs

Introduction to Deep Learning



Basic Structure of an RNN

« Unrolling RNNs Same function for the hidden layers

C? b O

>

; ARy
b ® & ©

[Olah, https.//colah.github.io 15] Understanding LSTMs

Introduction to Deep Learning 34



Basic Structure of an RNN

« Unrolling RNINs

>
|

[Olah, https.//colah.github.io 15] Understanding LSTMs
Introduction to Deep Learning

)
:
b




Basic Structure of an RNN

« Unrolling RNINs as feedforward nets

t+1 t+2
J—I— Qig—l_

‘\X/eights are the samel

Daniel Cremers Introduction to Deep Learning 36



Backprop through an RNN

« Unrolling RNNs as feedforward nets

‘ Chain rule ‘

Allthe waytot =0

Add the derivatives at different times for each weight

Daniel Cremers Introduction to Deep Learning 37



Long-term Dependencies

b @ €5
L1 @?l

I
A > > )

Ll é s

| moved to Germany .. so | speak German fluently

[Olah, https.//colah.github.io '15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning



Long-term Dependencies

« Simple recurrence A, = 0,4,_1 + 0,.x;

« Letusforgettheinput A, =0/A4, L>

h)

1

/ A
Same welgnts are é

Multiplied over and over
again

Daniel Cremers Introduction to Deep Learning



Long-term Dependencies

» Simple recurrence A, = 0,tA,

What happens to small weights?
Vanishing gradient

What happens to large weights?
Exploding gradient

Daniel Cremers Introduction to Deep Learning
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Long-term Dependencies

+ Simple recurrence A, = 0 A,

h)
C 1
e |f 8 admits eigendecomposition A

e

Matrix of Diagonal of this
elgenvectors matrix are the
elgenvalues

Daniel Cremers Introduction to Deep Learning 41




Long-term Dependencies

« Simple recurrence A, = %A,

« [f 8 admits eigendecomposition L>

b

1

A
0 = QAQT CID

« Orthogonal 8 allows us to simplify the recurrence

A, = QAtQTAo

Daniel Cremers Introduction to Deep Learning




Long-term Dependencies

« Simple recurrence A, = QA'Q' A4,

What happens to eigenvalues with
magnitude less than one?

Vanishing gradient

What happens to eigenvalues with
magnitude larger than one?

Exploding gradient ~_ Gradient
clipping

Daniel Cremers Introduction to Deep Learning



Long-term Dependencies

- Simple recurrence A, = 0 tA,

/

Let us Just make a matrix with eigenvalues =1

Allow the cell to maintain its “state’

Daniel Cremers Introduction to Deep Learning



Vanishing Gradient

.x/f.--

- 1 From the weights 4, = 8.4,
e 2 From the activation functions (tanh) —
@ ®) ()
t t t
4 N N N

—> ( - —p

A A

\_ , U\ J

2 ® &)

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 45



Vanishing Gradient

« 1 Fromthe weights 4 =,9on
1

« 2 From the activation functions (tanh) 7

® @ ®

~ N e ™
—> —> -
A A
4
\_ J J \_ _J

2 ® &)

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 46



TUTi

_ong Short Term
Memory

[Hochreiter et al., Neural Computation'g7] Long Short-Term Memory

Daniel Cremers Introduction to Deep Learning 47



Long-Short Term Memory Units

« SImple RNN_has tanh as non-linearity

0 ®
1 ! |

4 N J

J
~
J

[Olah, https.//colah.github.io 15] Understanding LSTMs

aniel Cremers Introduction to Deep Learning 48



Long-Short Term Memory Units

LSTM
> b ®
4 T\ 4 A\ f T\

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 49



Long-Short Term Memory Units

« Key ingredients
« Cell = transports the information through the unit

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 50



Long-Short Term Memory Units

« Key ingredients
« Cell = transports the information through the unit
« Gate - remove or add information to the cell state

—®—
T

0) Sigmoid

I [Olah, https.//colah.github.io 15] Understanding LSTMs
or

Daniel Cremers Introduction to Deep Learning



LSTM: Step by Step

« Forgetgate f; =sigm(@yrx; + Oprhi_1 + by)

Decides when to
erase the cell state

ftT Sigmoid = output
1 petween 0 (forget)
a1 and 1 (keep)

Tt

[Olah, https.//colah.github.io 15] Understanding LSTMs

Daniel Cremers Introduction to Deep Learning



LSTM: Step by Step
« Inputgate i, =sigm(0,;x; + 0y;h—1 + b))

Decides which
values will be
updated

New cell state,
output from a
tanh (—1,1)

[Olah, https.//colah.github.io 15] Understanding LSTMs

Daniel Cremers Introduction to Deep Learning



LSTM: Step by Step

« Element-wise operations

Ci Previous Current
states state

(X @
&>

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 54



STM: Step by Step

« Output gate h; = 0,® tanh(C,;)

Decides which

he
T values will be
outputted
Ctanh>
O¢ 0

Output from a
tanh (—1,1)

[Olah, https.//colah.github.io 15] Understanding LSTMs
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LSTM: Step by Step

+ Forget gate f, = sigm(Bysx; + Oprhe_y + by)

* |Inputgate iy = sigm(0,;xs + 0;hi_1 + b;)
« Output gate o; = sigm(0,,xs + 0y hs—1 + b))

« Cellupdate g, = tanh(Oyyx; + Opshe_q + by)
¢ C@U Ct — ft @Ct_l +it®gt
¢ Output ht — OtQ tanh(Ct)

Daniel Cremers Introduction to Deep Learning



LSTM: Step by Step

* Forget gate ] . + @_1 +

* [nput gate 1+

« Output gate 4+

« Cell update _1+

« Cell

« Output h, = 0,® tanh(C,) L earned through

backpropagation

Daniel Cremers Introduction to Deep Learning 57



LSTM

« Highway for the gradient to flow

[Olah, https.//colah.github.io 15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning 58



LSTM: Dimensions

123 123 128
« Cellupdate g; = tanh(@ygzx; +0pshe_q + by)

When coding an
LSTM, we have to

158 deﬂne the size of the
nhidden state

By Dimensions need to
128 match

Ti | g What operation do | need to doto my input to get

a 128 vector representation?

[Olah, https.//colah.github.io '15] Understanding LSTMs
Daniel Cremers Introduction to Deep Learning



def lstm_step forward(x, prev_h, prev_c, Wx, Wh, b):
Forward pass for a single timestep of an LSTM.

The input data has dimension D, the hidden state has dimension H, and we use
a minibatch size of N.

Inputs:

- x: Input data, of shape (N, D)

- prev_h: Previous hidden state, of shape (N, H)
- prev_c: previous cell state, of shape (N, H)

- Wx: Input-to-hidden weights, of shape (D, 4H)
- Wh: Hidden-to-hidden weights, of shape (H, 4H)
- b: Biases, of shape (4H,)

Returns a tuple of:

- next_h: Next hidden state, of shape (N, H)

- next c: Next cell state, of shape (N, H)

- cache: Tuple of values needed for backward pass.

next_h, next_c, cache = None, None, None

N, H = prev_h.shape
# 1

a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b
# 2

ai = al:, :Hl

af = al:, H:2*H]

ao = al:, 2*H:3*H]
ag = al:, 3*H:]

# 3

i = sigmoid(ai)

f = sigmoid(af)

o = sigmoid(ao)

g = np.tanh(ag)

# 4

next c = f * prev.c +1i*g

next_h = o * np.tanh(next_c)
cache = i, f, o, g, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h

return next_h, next c, cache|

LSTM In code

def lstm_step_backward(dnext_h, dnext_c, cache):

Backward pass for a single timestep of an LSTM.

Inputs:

- dnext_h: Gradients of next hidden state, of shape (N, H)
- dnext_c: Gradients of next cell state, of shape (N, H)

- cache: Values from the forward pass

Returns a tuple of:

- dx: Gradient of input data, of shape (N, D)

- dprev_h: Gradient of previous hidden state, of shape (N, H)
- dprev_c: Gradient of previous cell state, of shape (N, H)

- dwx: Gradient of input-to-hidden weights, of shape (D, 4H)
- dwWh: Gradient of hidden-to-hidden weights, of shape (H, 4H)
- db: Gradient of biases, of shape (4H,)

dx, dh, dc, dwx, dwh, db = None, None, None, None, None, None
i, f, o, g, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h = cache

# backprop into step 5
do = np.tanh(next_c) * dnext_h
dnext_c += o * (1 - np.tanh(next_c) ** 2) * dnext_h

# backprop into 4

df = prev_c * dnext_c

dprev_c = T * dnext_c
i = g * dnext_c

dg = 1 * dnext_c

# backprop into 3

dai = sigmoid(ai) * (1 - sigmoid{ai}) * di
daf = sigmoid(af) * (1 - sigmoid{af}) * df
dac = sigmoid(ao) * (1 - sigmoid{ao}) * do
dag = (1 - np.tanh(ag) ** 2) * dg

# backprop into 2
da = np.hstack((dai, daf, dao, dag))

# backprop into 1

db = np.sum(da, axis = @)
dprev_h = np.dot(wh, da.T).T
dwh = np.dot{prev_h.T, da)
dx = np.dot(da, Wx.T)

dwWx = np.dot(x.T, da)

return dx, dprev_h, dprev_c, dwx, dwh, db 65()
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Attention
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Attention is all you need

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* Y.ukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com
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Attention vs convolution

Convolution Global attention
0000000000 00 ﬂ....
oodéiTikoo ooo/oo\oo
Fully Connected layer L ocal attention

gt




Long-Term Dependencies

b ®
1 1 ! 6?
A » A — A —

A A A
® ©  © © ©
| moved to Germany .. so | speak German fluently.

Source: https:.//colah.github.io/posts/2015-08-Understanding-LSTMs/
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Attention: Intuition

> 9 © ©® ©

f f f
Context
1 t+1
04t Al Qegl e
A — A — A > —> —
| moved to Germany .. so | speak German fluently
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Attention: Architecture

the information

« A decoder processes @ @ @
f f
{ D

—.D

e Decoders take as Context
INnput: Q41
— Previous decoder

Nidden state

A
— Previous output
— Attention

Daniel Cremers Introduction to Deep Learning



Transformers
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Deep Learning Revolution

_ Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Fleld invented Computer vision NLP

Started NeurlPS 2012 NeurlPS 2017
Paper AlexNet Transformers
Conquered vision Around 2014-2015 Around 2020-2021
Reptaced Traditional ML/CV CNNs, RNNs
(Augmented)

Daniel Cremers Introduction to Deep Learning
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Fully connected
layer

Multi-Head
Attention on the
‘encoder’

Daniel Cremers

Transtormers

Output
Probabilities

Add & Norm
[ Add & Norm | -
~Lodd & o Multi-Head
Feed Attention
Forward 7 7 N
S
Nix Add & Norm
,——b{ Add & Norm | Masked
Multi-Head Multi-Head
Ly Attention Attention
C— J 4 —
Positional Positional
Encod 9 & :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Introduction to Deep Learning

Masked Multi-
Head Attention
on the "decoder’



Multl-Head Attention

L_f Intuition: Take the query Q, find the most similar
e key K, and then find the value V that
— corresponds to the key.
)= ' In other words, learn V, K, Q where
SetiE ey JJ& hn V- hereis abunch of interesting things.
Attention , . .
18 18 38 K - here is how we can index some things,
/-= .r‘-"n Fm Q - I'would like to know this interesting thing.
Linear Linear Linear
¥ Y
L oosely connected to Neural Turing Machines
Vv K Q (Graves et al).

Daniel Cremers Introduction to Deep Learning 70



Multl-Head Attention

Index the values Multiply queries
via a differentiable with keys
operator.

/ Get the values
\ QKT /

Attention(Q, K, V) = softmax \/d_
k

To train them well, divide by +/dg , ‘probably’ because for
large values of the key's dimension, the dot product grows

large In magnitude, pushing the softmax function into regions
where it has extremely small gradients.

Daniel Cremers Introduction to Deep Learning
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Multl-Head Attention

S~

Q

Adapted from Y. Kilcher

Introduction to Deep Learning
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Multl-Head Attention

K1

K2

Introduction to Deep Learning
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Multl-Head Attention

K1 Values
V1
Ko V2
K5 V3
K
K3 Q 52

Daniel Cremers Introduction to Deep Learning



Multl-Head Attention

K1 Values
V1
Ko \C
K5 V3
K V
K3 Q vz

QKT Essentially, dot product between (<Q,K1>), (<Q K2>), (<Q K3>),

(<Q Kg>), <Q K5>),

Daniel Cremers Introduction to Deep Learning
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Multl-Head Attention

K1 Values
V1
Ko V2
K5 V3
K \Vi
K3 Q vz

QKT s simply inducing a distribution over the values.
The larger a value is, the higher Is its softmax value,
\Jdy /] Can be interpreted as a differentiable soft indexing.

Daniel Cremers Introduction to Deep Learning 76
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Multl-Head Attention

K1 Values
V1
Ko V2
K5 V3
K \Vi
K Q vz

T
QK s simply inducing a distribution over the values.

/d The larger a value is, the higher Is its softmax value.
K/ Canbe in\tﬂeﬁr{preted as a differentiable soft indexing,.

duction to Deep Learning 77

softmax
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Multl-Head Attention

K1 Values
V1
» e ]
K5 V3
K
K3 Q 52

QKT Selecting the value V where
\/d_ the network needs to attend..
k

Daniel Cremers Introduction to Deep Learning
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Transtformers - a closer look

Output
Probabilities

Linear

K parallel

:
attention heads. —
Forward
I
I Add & Norm IT:
f_>' Ad d & N orm —{((Add & Norm ] T
| . Feedd Attention N
- orwar T 7 X
Multi-Head S =
. N — T ) Add &INorm ey
orm Masked
Atte ntlon Multi-Head Mul?i?Heead
‘ Attention Attention
A J) () 1
\ J \ — )
L Positional o) Positl
Encoding 5% Encodi
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Introduction to Deep Learning

Daniel Cremers



Daniel Cremers

Transtformers - a closer look

Output
Probabilities

Linear

Good old fully-

connected =
Forward
[ayers I Add&‘Norm I::
1 —{ Add & Norm Mt rioad
Feed Attention
~>| Add & Norm Fonward - =
| j :_4 ] Add & Norm
Add & Norm .
Masked
Feed Multi-Head Mul?i?Heead
Attention Attention
Forward | | O
\ J \ — )
‘ . woitional o) & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Transtformers - a closer look

Output
Probabilities
N layers of
attention

followed by FC
Feed
Forward
dl 1 Y (Add & Norm I-_:
~—>| Add & Norm | r~ SR Mult-Hoad
T Feed Attention
Feed Forward 7 7 N
Forward . AGd & Norm
Y ~—{ Add & Norm | Vaskod
Multi-Head Multi-Head
Attention Attention
At At
~>| Add & Norm | ]
-1 Paositional A Positional
Multi-Head Encoding 3 5% Encoding
i Input Output
Attentlon Embedding Embedding
At 2 f f
| Inputs Outputs
J (shifted right)
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Transtformers - a closer look

Output
Probabilities

Same as multi-head attention,
but masked. Ensures that the

Linear

predictions for position | can —
depend only on the Knowa—— o
outputs at positions less thafes, )|||Las=] || .
¥ Nx | A5d & Norm ) Ad;:;; Zrm
Masked inion terion
- t 4 At
Multi-Head — ) "=
i Positional ositional
Attention Encoding (O~ & Encoting

Input Output
& 1 } Embedding Embedding
t ! !

Inputs Outputs
(shifted right)
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Transtformers - a closer look
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Transtformers - a closer look
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What Iis missing from self-attention?

o« Convolution: a different linear transformation for each

relative position. Allows you to distinguish what
information came from where.

« Self-attention: a weighted average.
Convolution Self-Attention
. 0/7‘\. > o g ./ \
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Transtformers - a closer look
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Transformers — a final look
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Self-attention: complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

where n is the sequence length, d is the representation dimension,
Kk Is the convolutional kernel size, and r is the size of the neighborhood.
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Self-attention: complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

where n is the sequence length, d is the representation dimension,
Kk Is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it Is 512), self-attention is very efficient.
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Transformers — training tricks

« ADAM optimizer with proportional learning rate:

0 1.5)

lrate = d_2:° . min(step_num ™~ 2 step_num - warmup_steps”

model

* Residual dropout
* [abel smoothing
« Checkpoint averaging
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Transtormers - results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

del BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR EN-DE  EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 - 10%0
GNMT + RL [31] 24.6 39.92 2.3-101% 1.4-10%
ConvS2S [8] 25.16 40.46 9.6-10% 1.5-10%
MOoE [26] 26.03 40.56 2.0-10% 1.2.10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%° 1.1-.10%
ConvS2S Ensemble [8] 2636  41.29 7.7-101°  1.2.10%
Transformer (base model) 27.3 38.1 3.3.1018
Transformer (big) 28.4 41.0 2.3-10%°
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Transformers - summary

o Significantly improved SOTA In machine translation
* [Launched a new deep-learning revolution in MLP

« Building block of NLP models like BERT (Google) or
GPT/ChatGPT (OpenAl)

« BERT has been heavily used in Google Search

« And eventually made its way to computer vision (and
other related fields)’

"Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale’, ICLR 2020.
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See you next time!
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