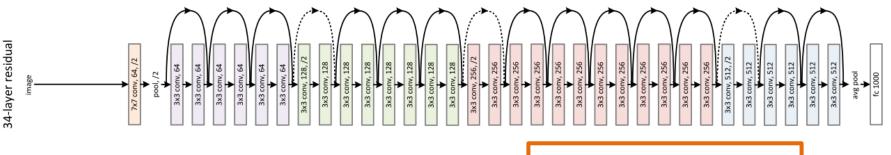


1

RNNs and Transformers

Transfer Learning

ResNet



ResNet-152: 60M parameters

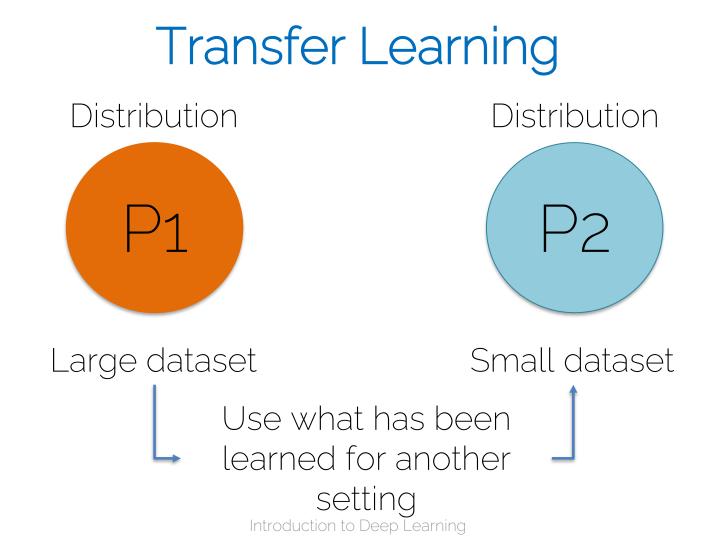
[He et al. CVPR'16] ResNet

Transfer Learning

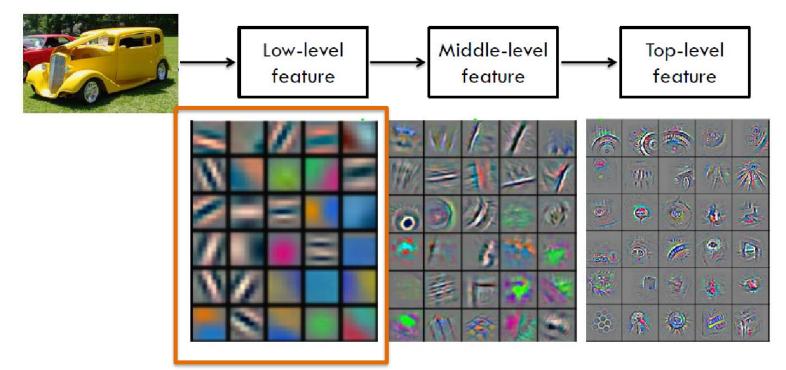
• Training your own model can be difficult with limited data and other resources

e.g.,

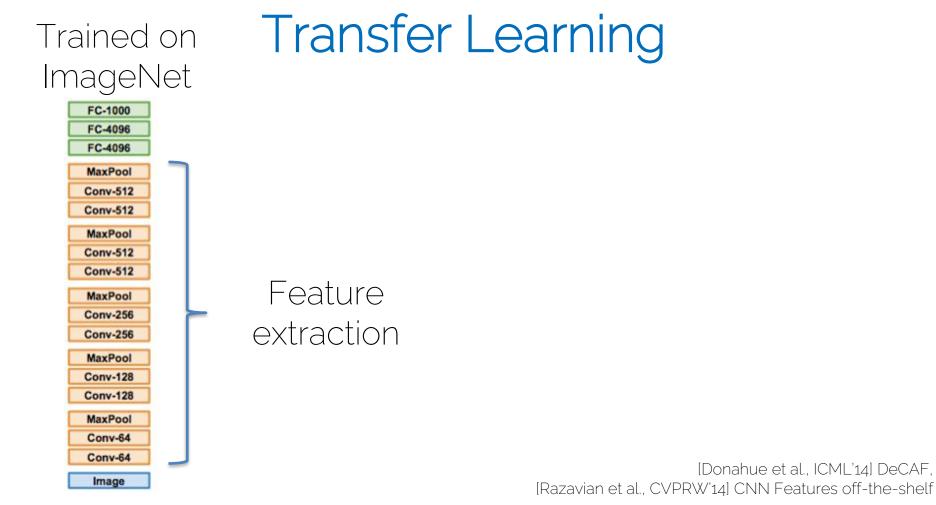
- It is a laborious task to manually annotate your own training dataset
- Why not reuse already pre-trained models?



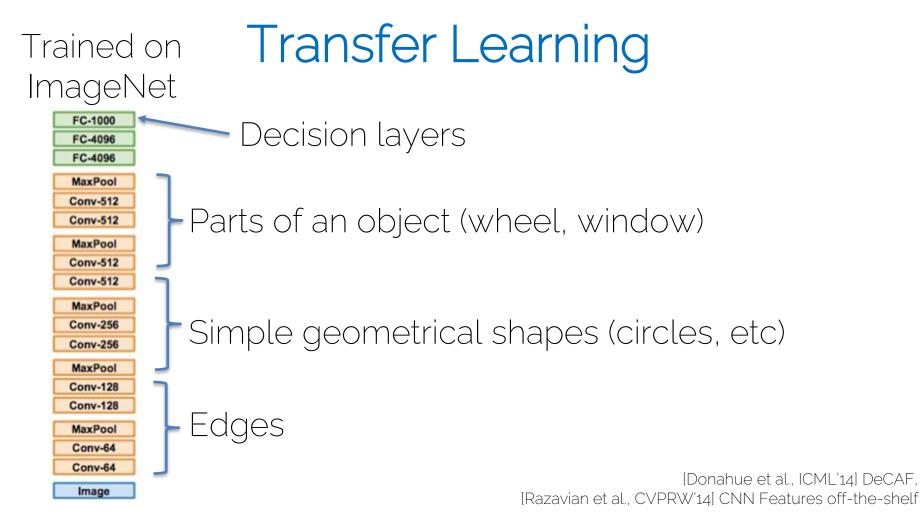
Transfer Learning for Images



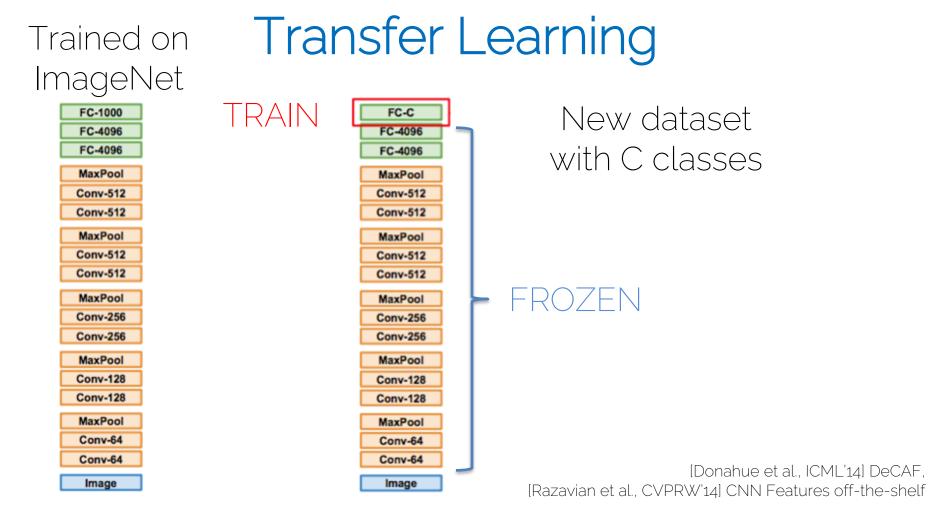
[Zeiler al., ECCV'14] Visualizing and Understanding Convolutional Networks



Daniel Cremers

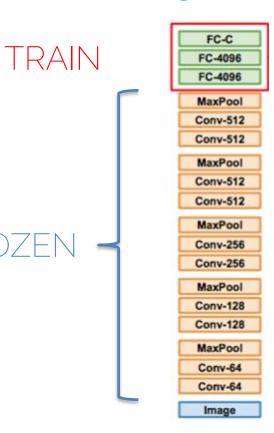


Daniel Cremers



Transfer Learning

If the dataset is big enough train more layers with a low learning rate



FRC

When Transfer Learning Makes Sense

- When task T1 and T2 have the same input (e.g. an RGB image)
- When you have more data for task T1 than for task T2
- When the low-level features for T1 could be useful to learn T2

Representation Learning

Learning Good Features

- Good features are essential for successful machine
 learning
- (Supervised) deep learning depends on training data used: input/target labels
- Change in inputs (noise, irregularities, etc.) can result in drastically different results

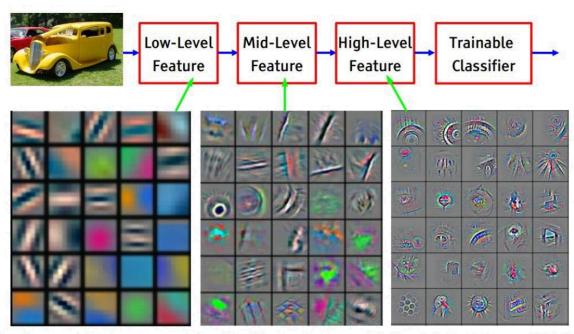
Representation Learning

Allows for discovery of representations required for various tasks

Deep representation learning: model maps input X to output Y

Deep Representation Learning

• Intuitively, deep networks learn multiple levels of abstraction



Daniel Cremers

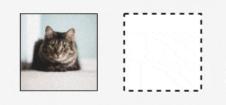
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

How to Learn Good Features?

• Determine desired feature invariances

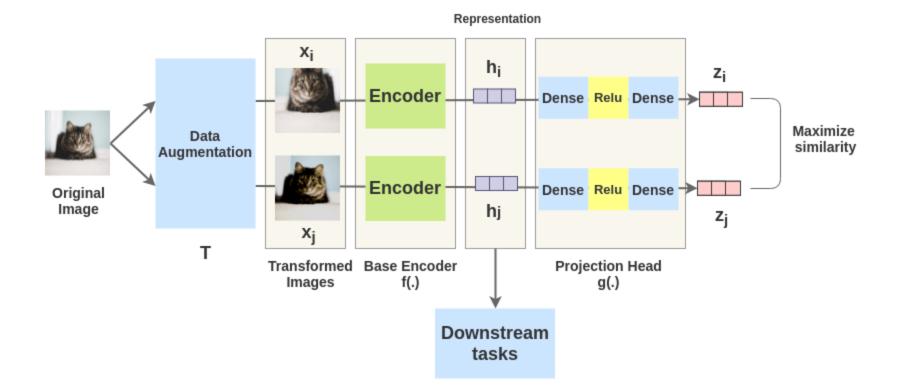
• Teach machines to distinguish between similar and dissimilar things

Match the correct animal



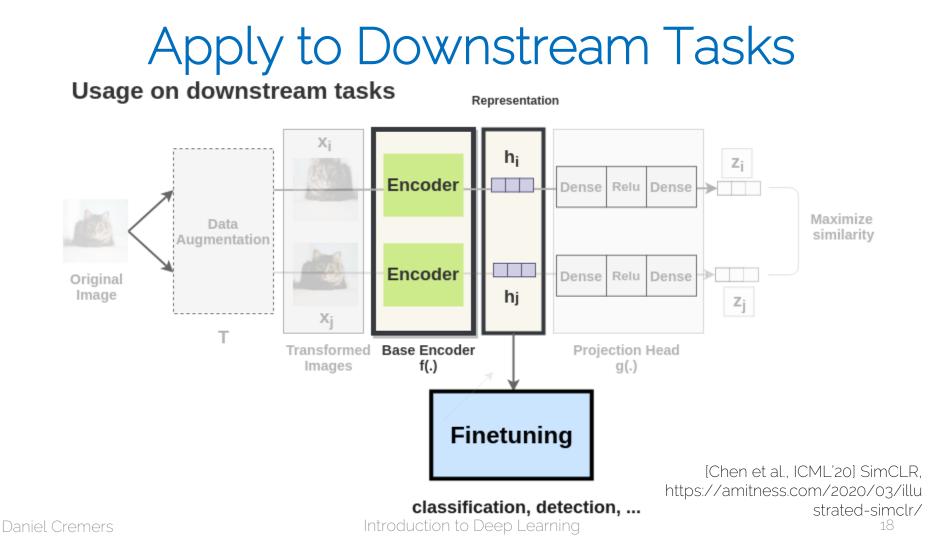
https://amitness.com/2020/03/illustrated-simclr/

How to Learn Good Features?



[Chen et al., ICML'20] SimCLR, Introduction to Debtps://amitness.com/2020/03/illustrated-simclr/

17



Transfer & Representation Learning

Transfer learning can be done via representation
 learning

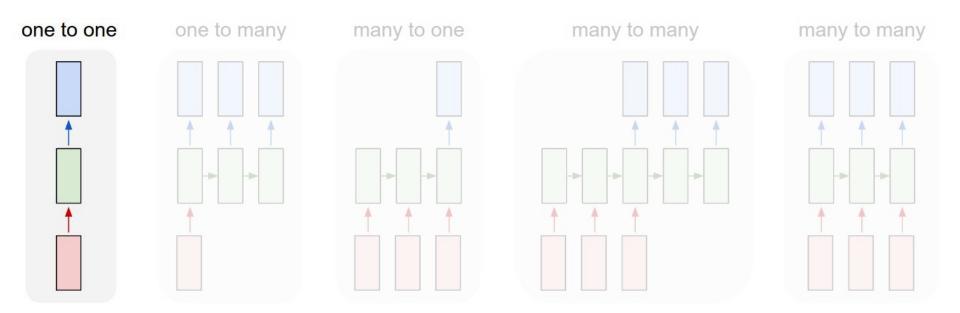
• Effectiveness of representation learning often demonstrated by transfer learning performance (but also other factors, e.g., smoothness of the manifold)

Recurrent Neural Networks

Processing Sequences

• Recurrent neural networks process sequence data

• Input/output can be sequences



Classical neural networks for image classification

Source: <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u> Introduction to Deep Learning

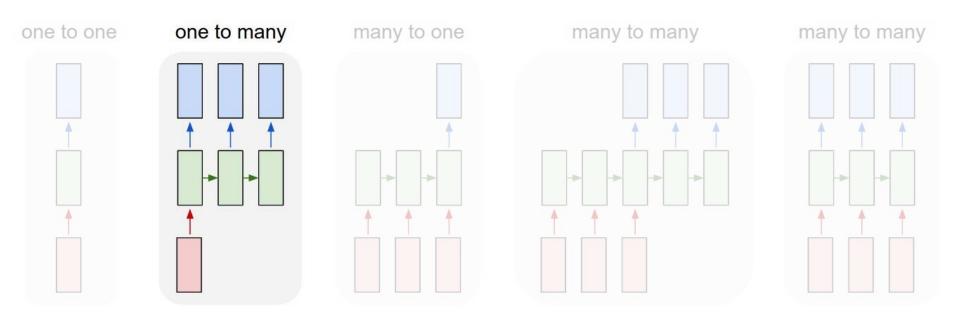
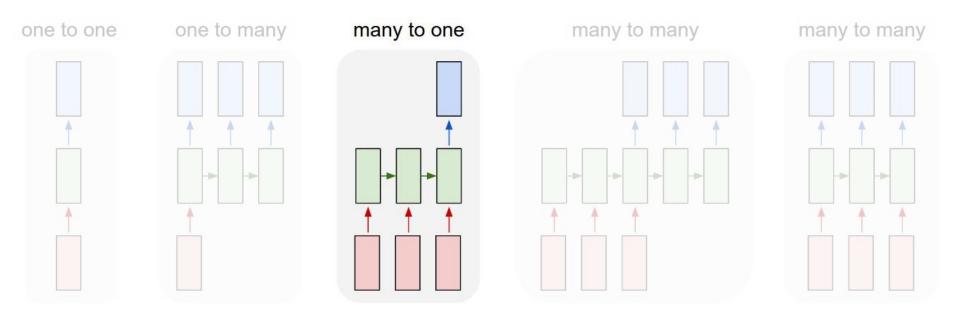


Image captioning

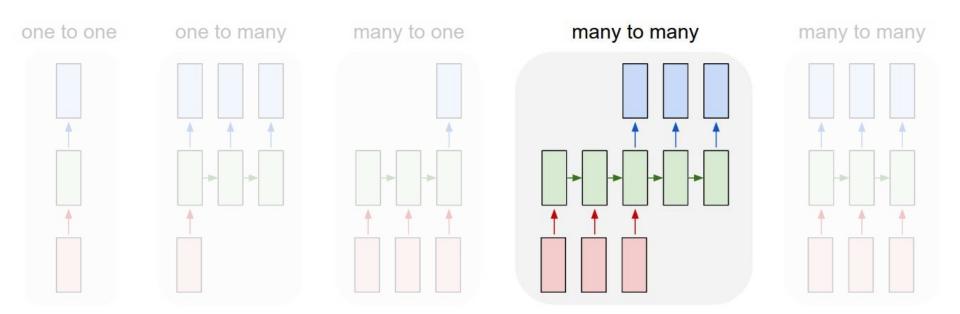
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Daniel Cremers



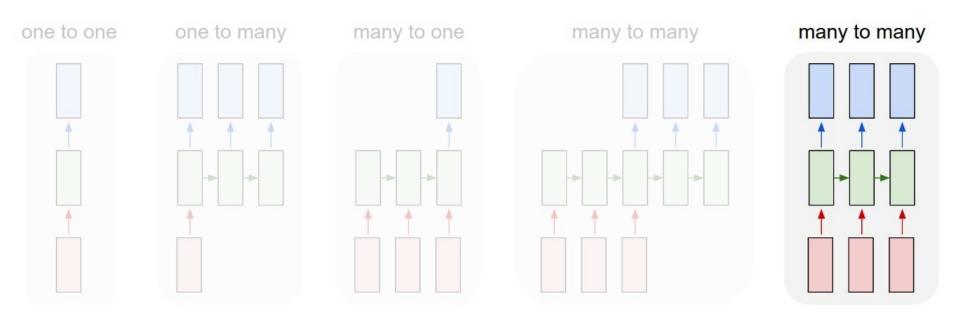
Language recognition

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Machine translation

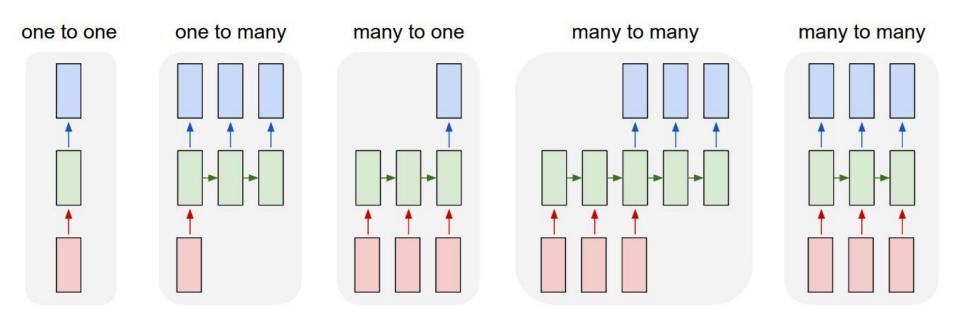
Source: <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u> Introduction to Deep Learning



Event classification

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Daniel Cremers

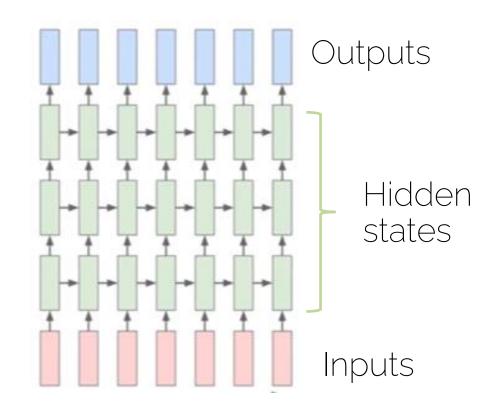


Event classification

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

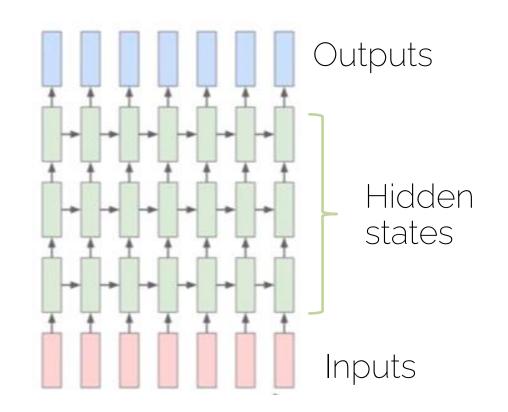
Daniel Cremers

• Multi-layer RNN

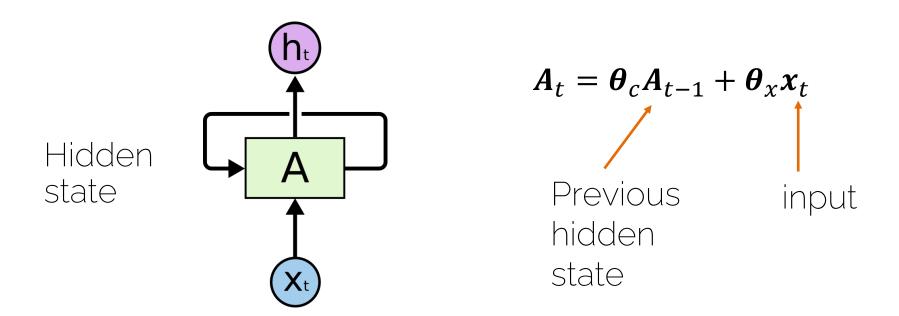


• Multi-layer RNN

The hidden state will have its own internal dynamics More expressive model!

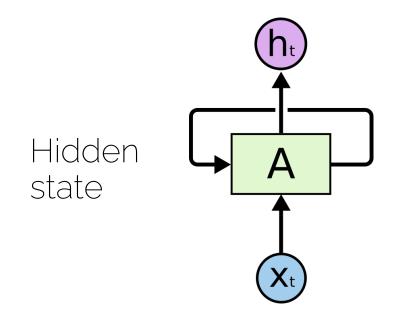


• We want to have notion of "time" or "sequence"



[Olah, https://colah.github.io '15] Understanding LSTMs

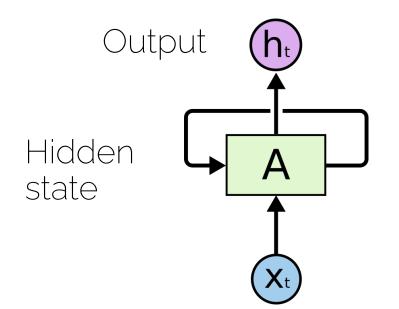
• We want to have notion of "time" or "sequence"



 $A_t = \theta_c A_{t-1} + \theta_x x_t$ Parameters to be learned

[Olah, https://colah.github.io '15] Understanding LSTMs

• We want to have notion of "time" or "sequence"



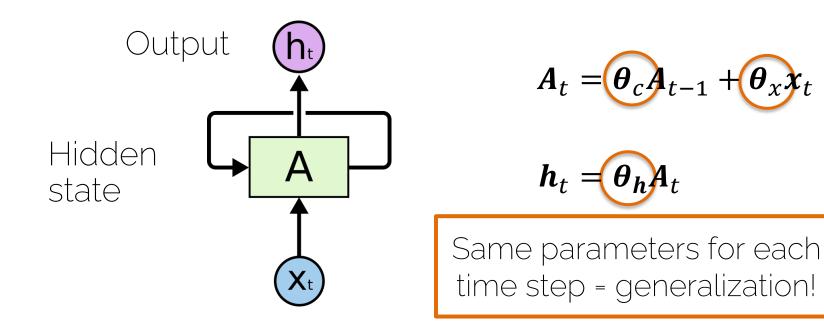
$$\boldsymbol{A}_t = \boldsymbol{\theta}_c \boldsymbol{A}_{t-1} + \boldsymbol{\theta}_x \boldsymbol{x}_t$$

 $\boldsymbol{h}_t = \boldsymbol{\theta}_{\boldsymbol{h}} \boldsymbol{A}_t$

Note: non-linearities ignored for now

[Olah, https://colah.github.io '15] Understanding LSTMs

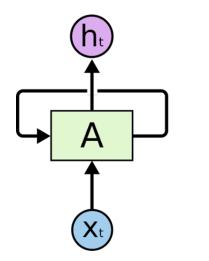
• We want to have notion of "time" or "sequence"

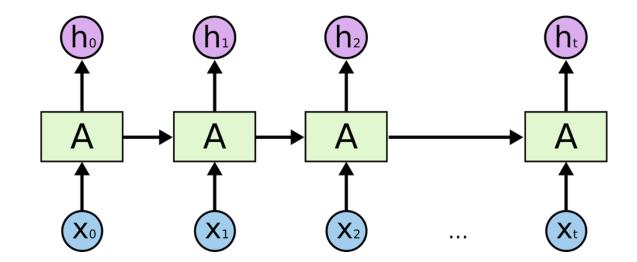


[Olah, https://colah.github.io '15] Understanding LSTMs Introduction to Deep Learning

• Unrolling RNNs

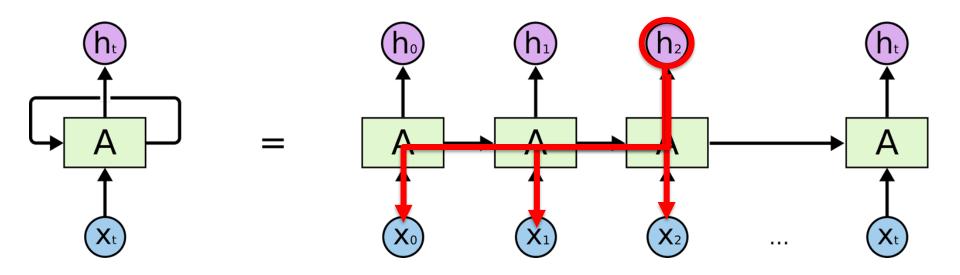
Same function for the hidden layers





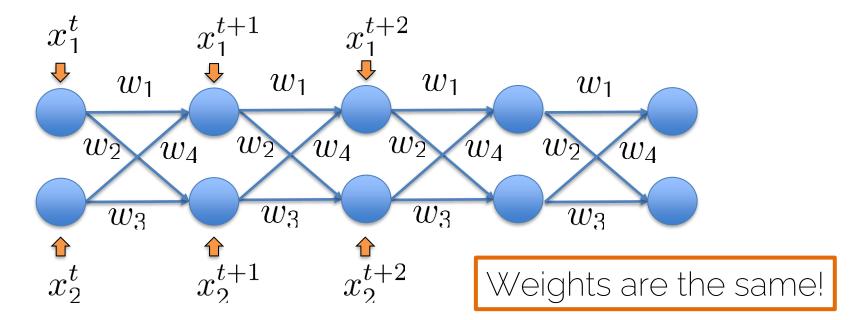
[Olah, https://colah.github.io '15] Understanding LSTMs

• Unrolling RNNs



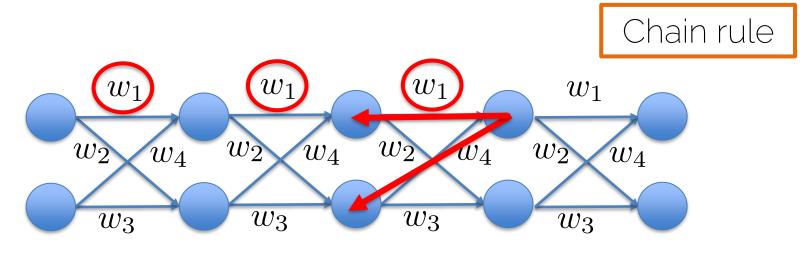
[Olah, https://colah.github.io '15] Understanding LSTMs

• Unrolling RNNs as feedforward nets



Backprop through an RNN

• Unrolling RNNs as feedforward nets

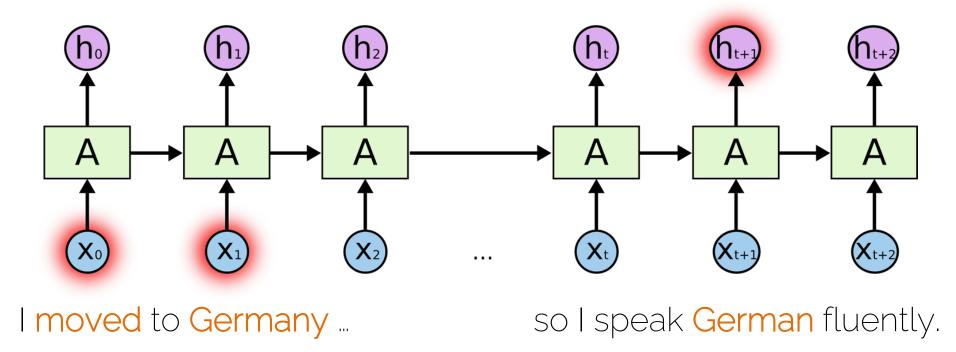


All the way to t = 0

Add the derivatives at different times for each weight

Daniel Cremers

Introduction to Deep Learning



[Olah, https://colah.github.io '15] Understanding LSTMs

Introduction to Deep Learning

• Simple recurrence $A_t = \theta_c A_{t-1} + \theta_x x_t$

• Let us forget the input $A_t = \theta_c^t A_0$

Same weights are multiplied over and over again t

X+

• Simple recurrence $A_t = \theta_c^{\ t} A_0$

What happens to small weights? Vanishing gradient

What happens to large weights? Exploding gradient

• Simple recurrence $A_t = \theta_c^{\ t} A_0$

• If $\boldsymbol{\theta}$ admits eigendecomposition

$$\theta = Q \Lambda Q^T$$

Matrix of Diagonal of this
eigenvectors matrix are the
eigenvalues

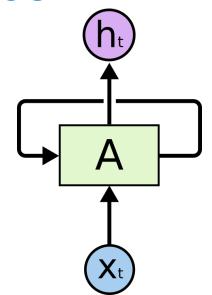
t

Xt.

• Simple recurrence $A_t = \theta^t A_0$

• If $\boldsymbol{\theta}$ admits eigendecomposition

 $\boldsymbol{\theta} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T$



- Orthogonal $\boldsymbol{\theta}$ allows us to simplify the recurrence

$$\boldsymbol{A}_t = \boldsymbol{Q} \boldsymbol{\Lambda}^t \boldsymbol{Q}^T \boldsymbol{A}_0$$

• Simple recurrence $A_t = Q \Lambda^t Q^T A_0$

What happens to eigenvalues with magnitude less than one? Vanishing gradient

What happens to eigenvalues with magnitude larger than one?

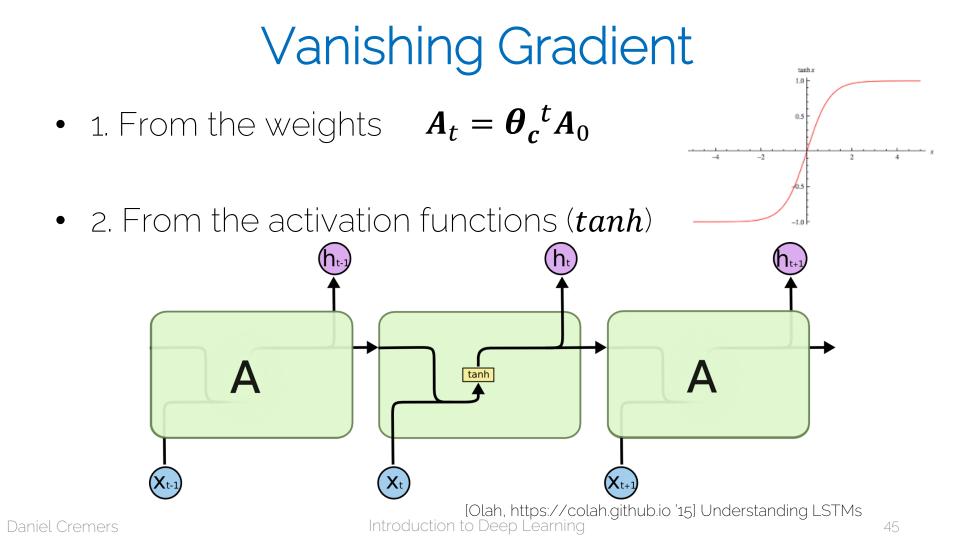
Exploding gradient 🔍

Gradient clipping

• Simple recurrence $A_t = \theta_c^{\ t} A_0$

Let us just make a matrix with eigenvalues = 1

Allow the **cell** to maintain its "*state*"

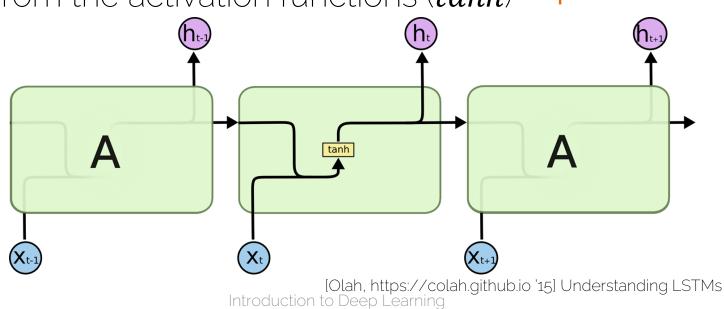


Vanishing Gradient

• 1. From the weights $A_t = \mathbf{A}^t A_0$

Daniel Cremers

• 2. From the activation functions (*tanh*)

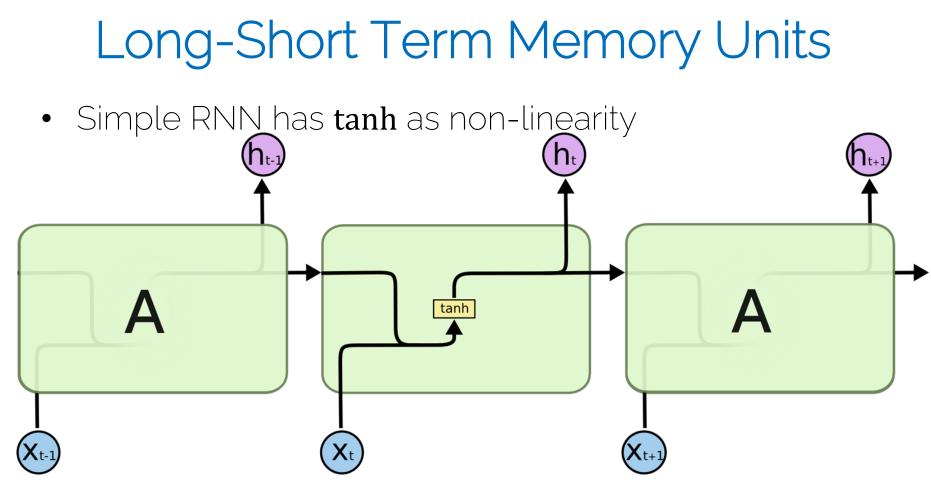


Long Short Term Memory

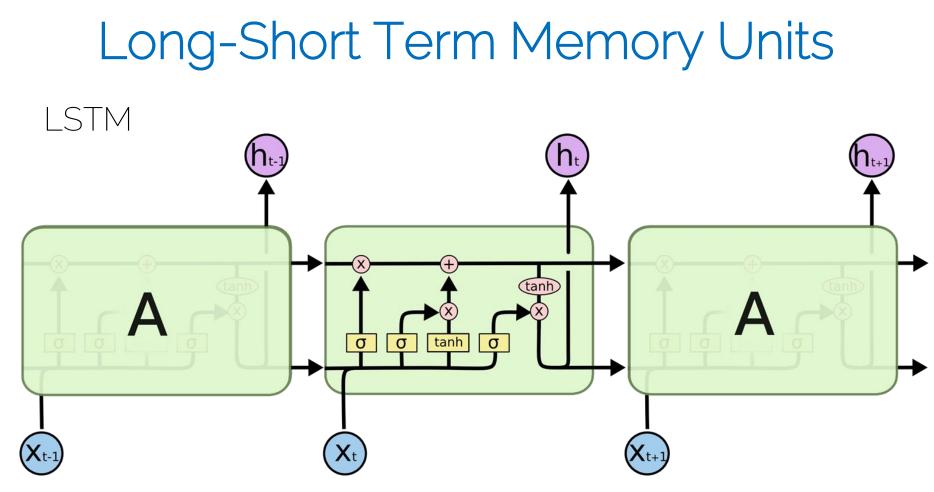
[Hochreiter et al., Neural Computation'97] Long Short-Term Memory

Daniel Cremers

Introduction to Deep Learning



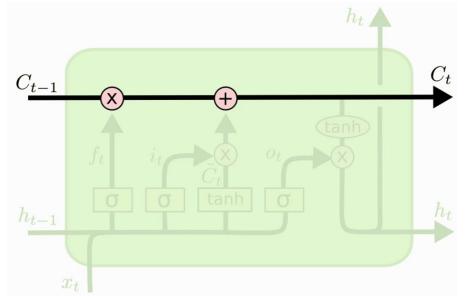
[Olah, https://colah.github.io '15] Understanding LSTMs



[Olah, https://colah.github.io '15] Understanding LSTMs

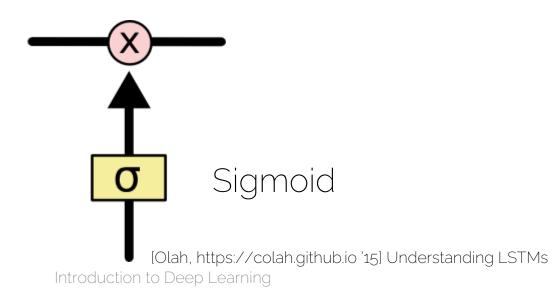
Long-Short Term Memory Units

- Key ingredients
- Cell = transports the information through the unit

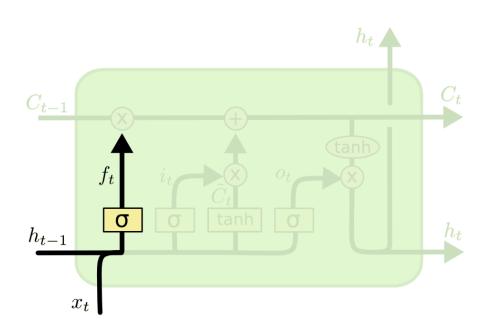


Long-Short Term Memory Units

- Key ingredients
- Cell = transports the information through the unit
- Gate = remove or add information to the cell state



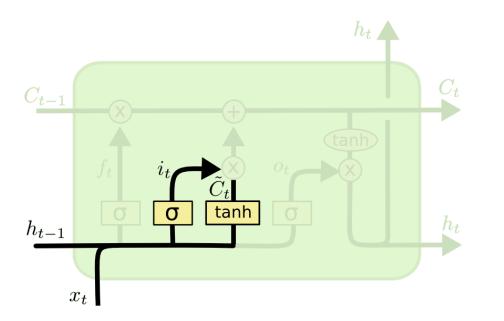
• Forget gate $f_t = sigm(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f)$



Decides when to erase the cell state

Sigmoid = output between **0** (forget) and **1** (keep)

• Input gate $i_t = sigm(\theta_{xi}x_t + \theta_{hi}h_{t-1} + b_i)$

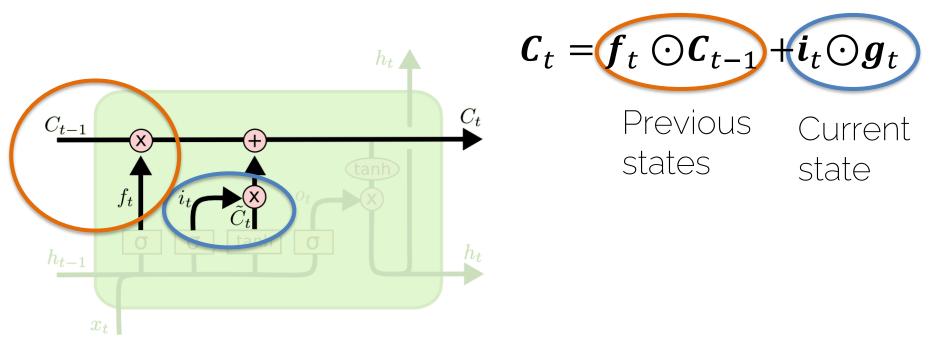


Decides which values will be updated

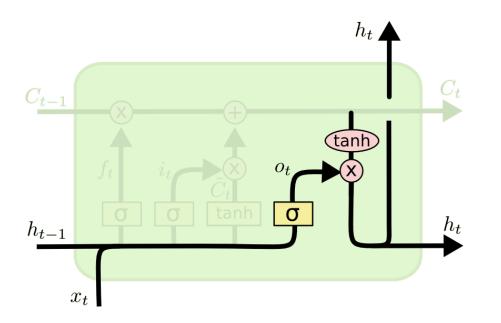
New cell state, output from a tanh (-1,1)

53

• Element-wise operations



• Output gate $h_t = o_t \odot \tanh(C_t)$



Decides which values will be outputted

Output from a tanh (-1, 1)

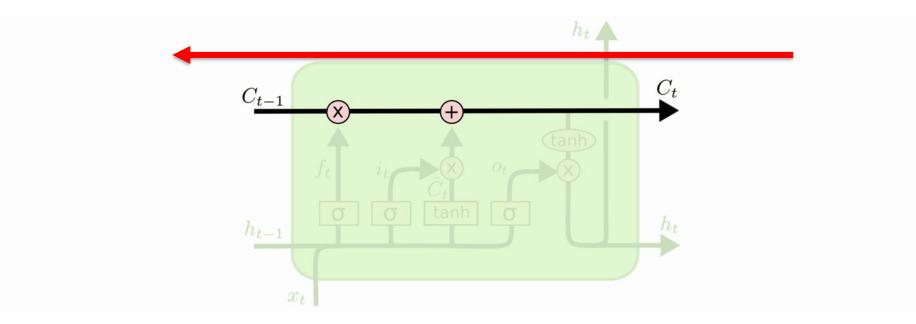
- Forget gate $f_t = sigm(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f)$
- Input gate $i_t = sigm(\theta_{xi}x_t + \theta_{hi}h_{t-1} + b_i)$
- Output gate $\boldsymbol{o}_t = sigm(\boldsymbol{\theta}_{xo}\boldsymbol{x}_t + \boldsymbol{\theta}_{ho}\boldsymbol{h}_{t-1} + \boldsymbol{b}_o)$
- Cell update $\boldsymbol{g}_t = tanh(\boldsymbol{\theta}_{xg}\boldsymbol{x}_t + \boldsymbol{\theta}_{hg}\boldsymbol{h}_{t-1} + \boldsymbol{b}_g)$
- Cell $C_t = f_t \odot C_{t-1} + i_t \odot g_t$
- Output $h_t = o_t \odot \tanh(C_t)$

- Forget gate $f_t = sigm(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f)$
- Input gate $i_t = sigm(\theta_{xi}x_t + \theta_{hi}h_{-1} + b_i)$
- Output gate $\boldsymbol{o}_t = sigm(\boldsymbol{\theta}_{xo}\boldsymbol{x}_t + \boldsymbol{\theta}_{ho}\boldsymbol{h}_{t-1} + \boldsymbol{o}_o)$
- Cell update $g_t = tanh(\theta_{xg}x) + \theta_{hg}h_{t-1} + \delta_g)$
- Cell $C_t = f_t \odot C_{t-1} + i_t \odot g_t$
- Output $h_t = o_t \odot \tanh(C_t)$

Learned through backpropagation

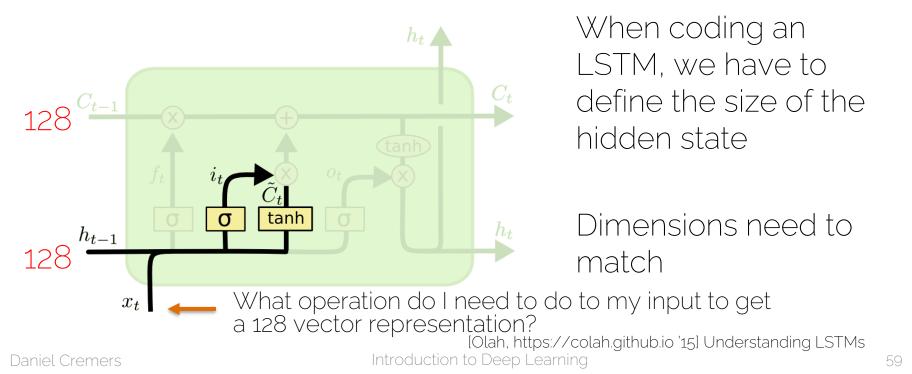
LSTM

• Highway for the gradient to flow



LSTM: Dimensions

• Cell update $\boldsymbol{g}_{t} = tanh(\boldsymbol{\theta}_{xg}\boldsymbol{x}_{t} + \boldsymbol{\theta}_{hg}\boldsymbol{h}_{t-1} + \boldsymbol{b}_{g})$



LSTM in code

<pre>def lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b): """</pre>	<pre>def lstm_step_backward(dnext_h, dnext_c, cache):</pre>
Forward pass for a single timestep of an LSTM.	Backward pass for a single timestep of an LSTM.
The input data has dimension D, the hidden state has dimension H, and we use a minibatch size of N. Inputs: - x: Input data, of shape (N, D) - prev_h: Previous hidden state, of shape (N, H) - prev_c: previous cell state, of shape (N, H) - Wx: Input-to-hidden weights, of shape (D, 4H) - Wh: Hidden-to-hidden weights, of shape (H, 4H) - b: Biases, of shape (4H,) Returns a tuple of: - next_h: Next hidden state, of shape (N, H) - next_c: Next cell state, of shape (N, H)	<pre>Inputs: dnext_h: Gradients of next hidden state, of shape (N, H) dnext_c: Gradients of next cell state, of shape (N, H) cache: Values from the forward pass Returns a tuple of: dx: Gradient of input data, of shape (N, D) dprev_h: Gradient of previous hidden state, of shape (N, H) dprev_c: Gradient of previous cell state, of shape (N, H) dwk: Gradient of previous cell state, of shape (D, 4H) dwk: Gradient of hidden-to-hidden weights, of shape (D, 4H) dwh: Gradient of biases, of shape (4H,) """ dx, dh, dc, dwx, dwh, db = None, None, None, None, None</pre>
- cache: Tuple of values needed for backward pass. """	
<pre>next_h, next_c, cache = None, None</pre>	<pre>i, f, o, g, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h = cache</pre>
<pre>N, H = prev_h.shape # 1 a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b</pre>	<pre># backprop into step 5 do = np.tanh(next_c) * dnext_h dnext_c += o * (1 - np.tanh(next_c) ** 2) * dnext_h</pre>
<pre># 2 ai = a[:, :H] af = a[:, H:2*H] ao = a[:, 2*H:3*H] ag = a[:, 3*H:]</pre>	<pre># backprop into 4 df = prev_c * dnext_c dprev_c = f * dnext_c di = g * dnext_c dg = i * dnext_c</pre>
<pre># 3 i = sigmoid(ai) f = sigmoid(af) o = sigmoid(ao) g = np.tanh(ag)</pre>	<pre># backprop into 3 dai = sigmoid(ai) * (1 - sigmoid(ai)) * di daf = sigmoid(af) * (1 - sigmoid(af)) * df dao = sigmoid(ao) * (1 - sigmoid(ao)) * do dag = (1 - np.tanh(ag) ** 2) * dg</pre>
# 4 next_c = f * prev_c + i * g	<i># backprop into 2</i> da = np.hstack((dai, daf, dao, dag))
<pre># 5 next_h = o * np.tanh(next_c) cache = i, f, o, g, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h return next_h, next_c, cache</pre>	<pre># backprop into 1 db = np.sum(da, axis = 0) dprev_h = np.dot(Wh, da.T).T dWh = np.dot(prev_h.T, da) dx = np.dot(da, Wx.T) dWx = np.dot(x.T, da)</pre>

return dx, dprev_h, dprev_c, dWx, dWh, db

Attention

Attention is all you need

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

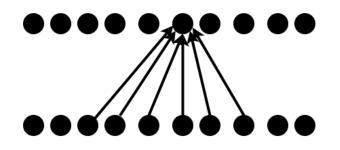
Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser*** Google Brain lukaszkaiser@google.com

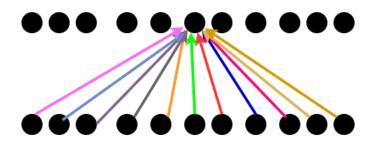
Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Attention vs convolution

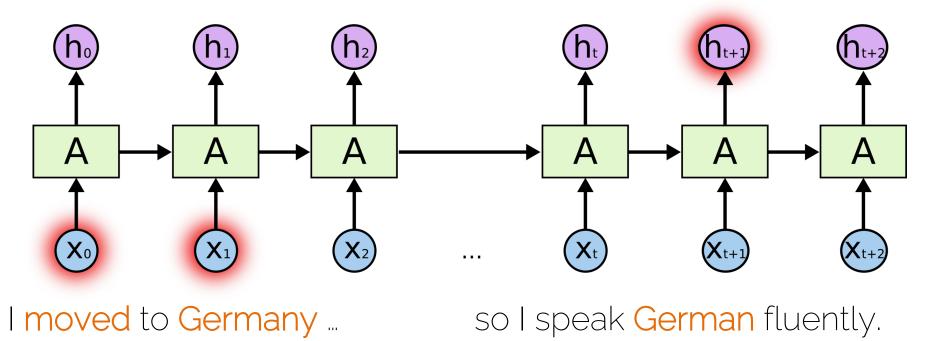
Convolution

Global attention

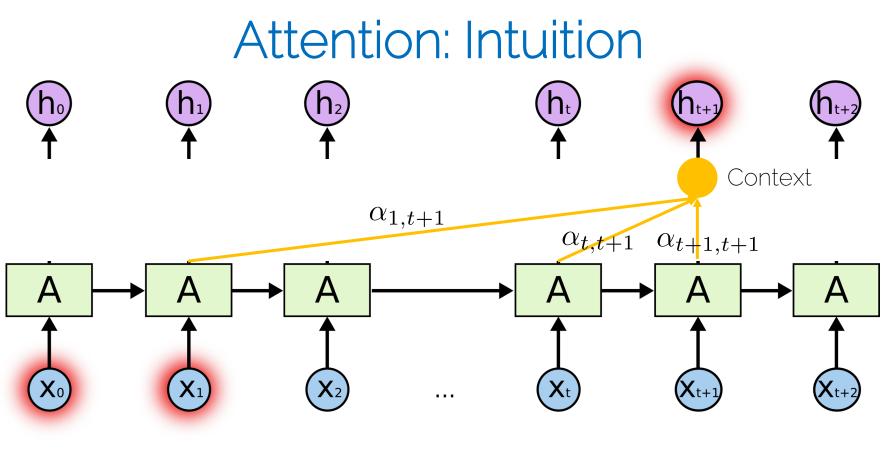




 Fully Connected layer
 Local attention



Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/



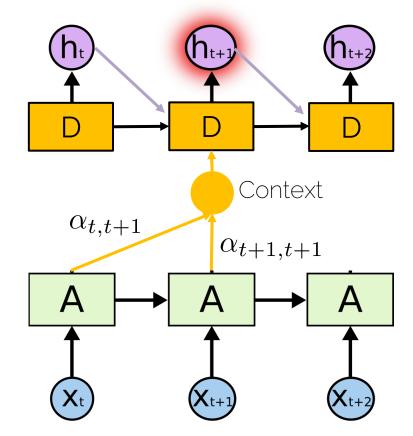
so I speak <mark>German</mark> fluently

I moved to Germany ...

Attention: Architecture

• A decoder processes the information

- Decoders take as input:
 - Previous decoder hidden state
 - Previous output
 - Attention

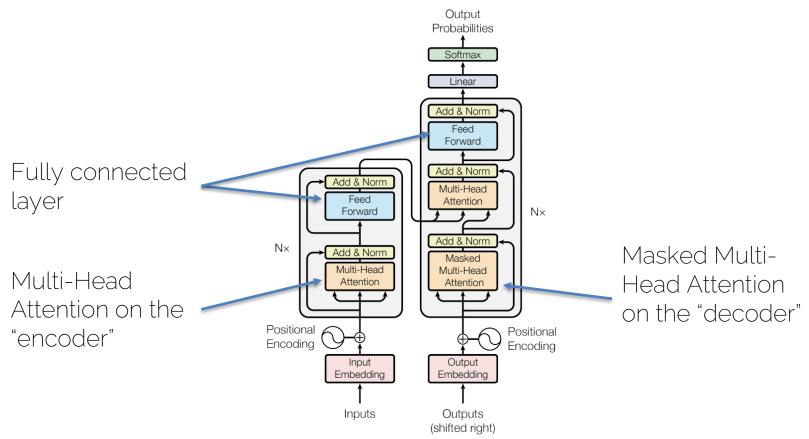


Transformers

Deep Learning Revolution

	Deep Learning	Deep Learning 2.0
Main idea	Convolution	Attention
Field invented	Computer vision	NLP
Started	NeurIPS 2012	NeurIPS 2017
Paper	AlexNet	Transformers
Conquered vision	Around 2014-2015	Around 2020-2021
Replaced (Augmented)	Traditional ML/CV	CNNs, RNNs

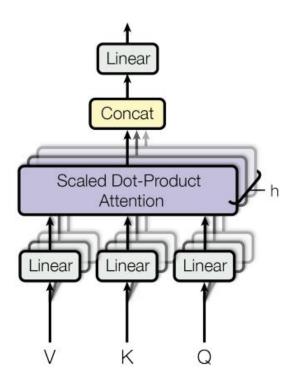
Transformers



Daniel Cremers

Introduction to Deep Learning

Multi-Head Attention

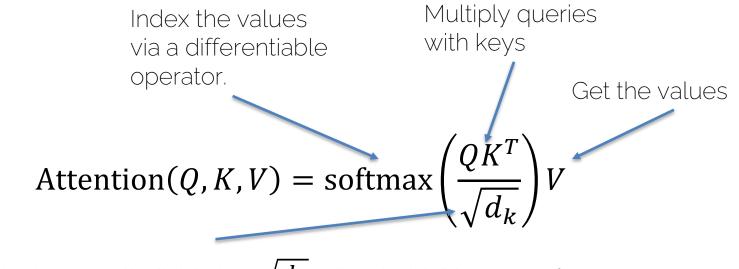


Intuition: Take the query Q, find the most similar key K, and then find the value V that corresponds to the key.

In other words, learn V, K, Q where: V – here is a bunch of interesting things. K – here is how we can index some things. Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines (Graves et al.).

Multi-Head Attention



To train them well, divide by $\sqrt{d_k}$, "probably" because for large values of the key's dimension, the dot product grows large in magnitude, pushing the softmax function into regions where it has extremely small gradients.

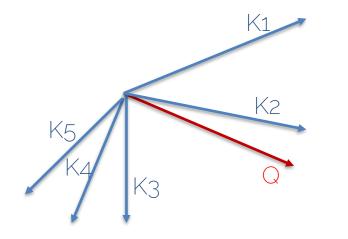
Daniel Cremers

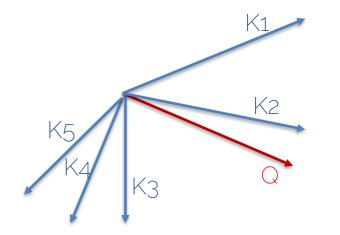
Multi-Head Attention

Adapted from Y. Kilcher

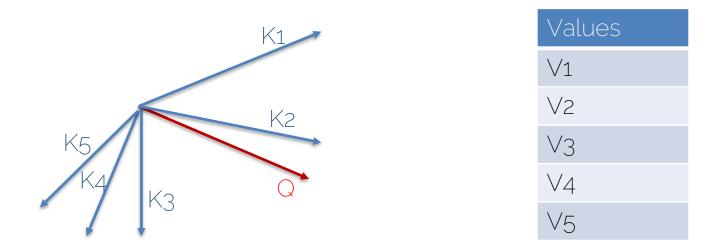
Daniel Cremers

Introduction to Deep Learning

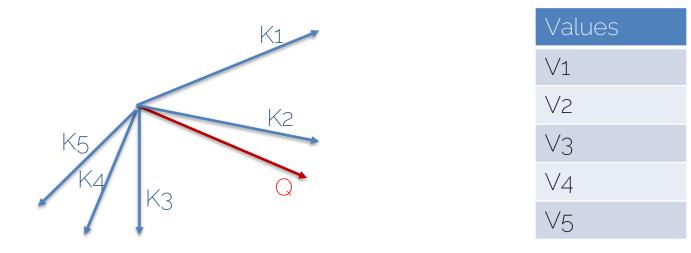




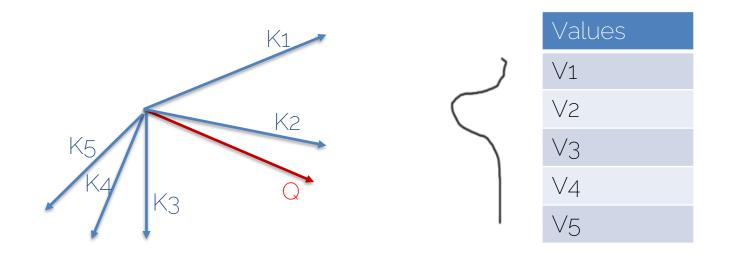
Values
V1
V2
V3
\vee_4
$\vee 5$



 QK^T Essentially, dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>), (<Q,K4>), (<Q,K5>).



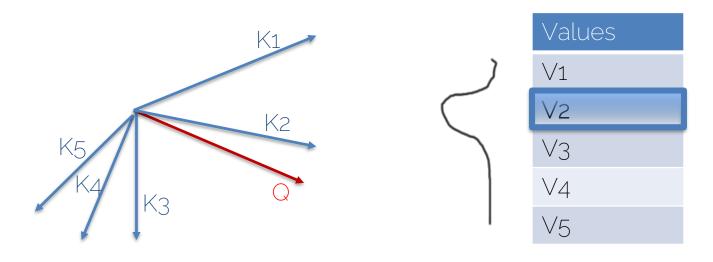
softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)$ Is simply inducing a distribution over the values. The larger a value is, the higher is its softmax value. Can be interpreted as a differentiable soft indexing.

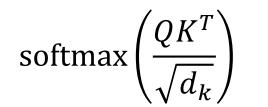


softmax

Is simply inducing a distribution over the values. The larger a value is, the higher is its softmax value. Can be interpreted as a differentiable soft indexing.

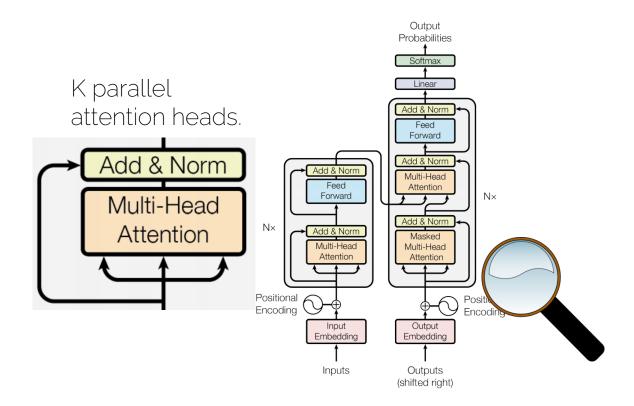
Daniel Cremers

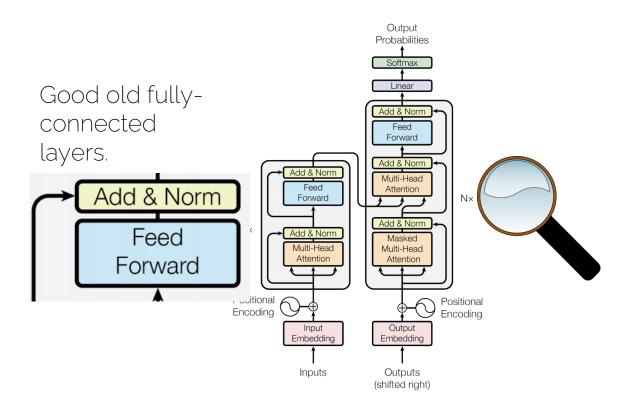


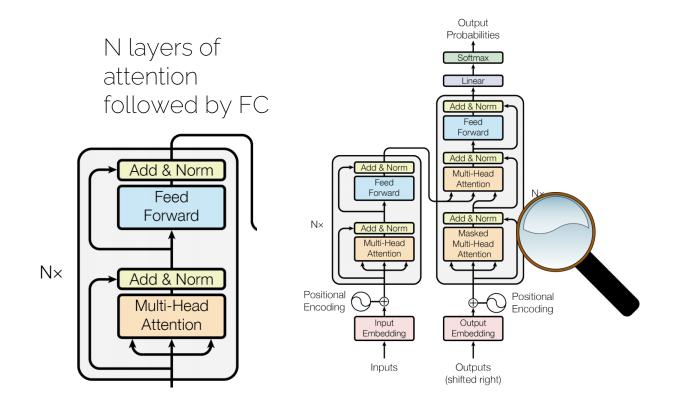


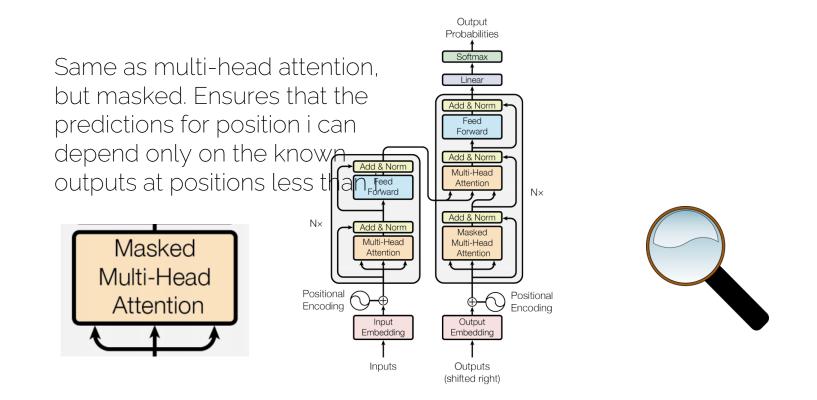
Selecting the value V where the network needs to attend..

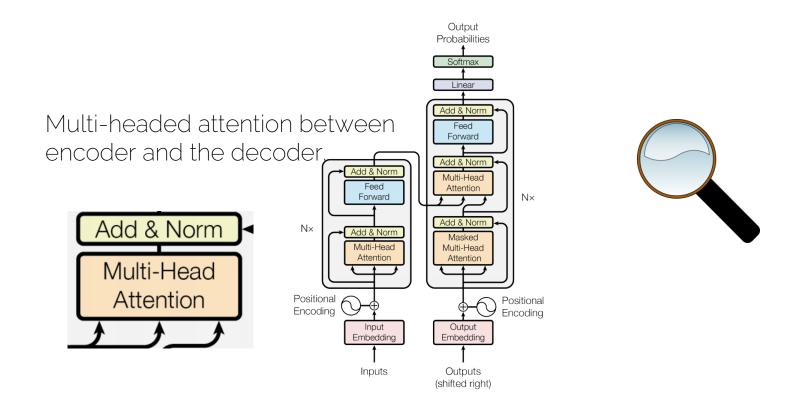
Daniel Cremers

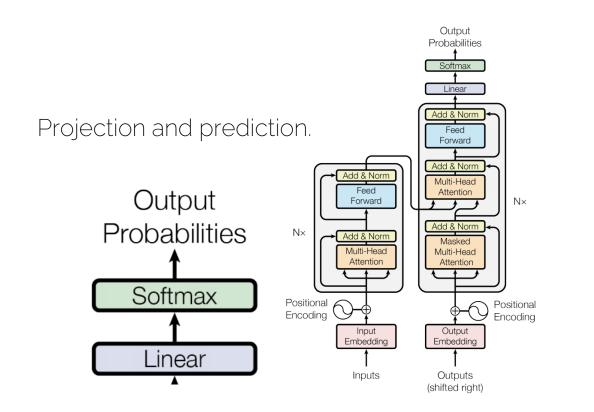






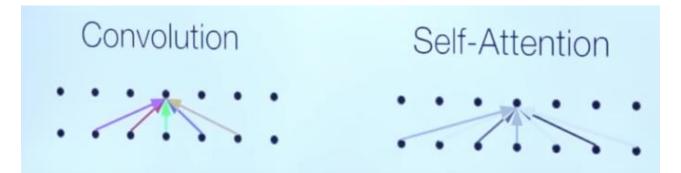


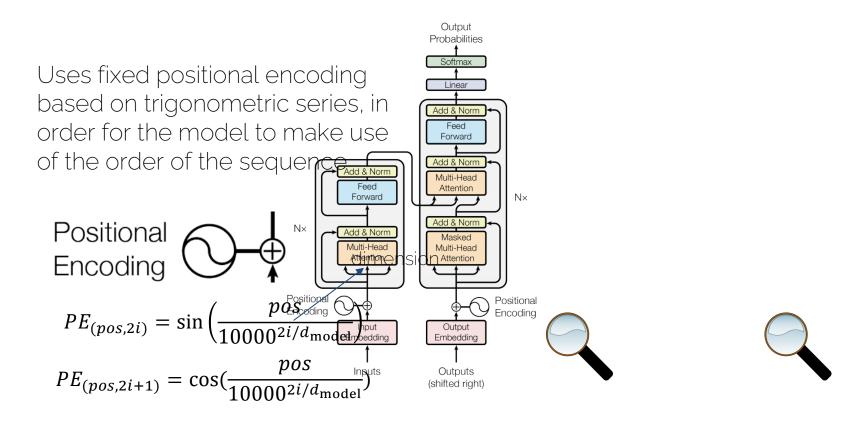




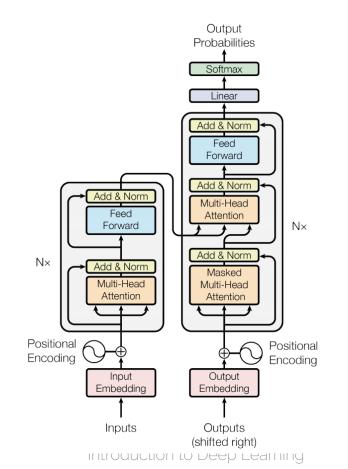
What is missing from self-attention?

- Convolution: a different linear transformation for each relative position. Allows you to distinguish what information came from where.
- Self-attention: a weighted average.





Transformers – a final look



Daniel Cremers

Self-attention: complexity

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	<i>O</i> (1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

where n is the sequence length, d is the representation dimension, k is the convolutional kernel size, and r is the size of the neighborhood.

Self-attention: complexity

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

where n is the sequence length, d is the representation dimension, k is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation dimension (in the paper, it is 512), self-attention is very efficient.

Daniel Cremers

Transformers – training tricks

• ADAM optimizer with proportional learning rate:

 $lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$

- Residual dropout
- Label smoothing
- Checkpoint averaging

Transformers - results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0\cdot10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$	

Transformers - summary

- Significantly improved SOTA in machine translation
- Launched a new deep-learning revolution in MLP
- Building block of NLP models like BERT (Google) or GPT/ChatGPT (OpenAI)
- BERT has been heavily used in Google Search

 And eventually made its way to computer vision (and other related fields)*

*Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR 2020.

See you next time!