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Attention
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Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Multiply queries 
with keys

To train them well, divide by             , “probably” because for 
large values of the key’s dimension, the dot product grows 
large in magnitude, pushing the softmax function into regions 
where it has extremely small gradients. 

Index the values 
via a differentiable 
operator.

Get the values

𝑑𝑘
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Transformers
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https://arxiv.org/pdf/1706.03762.pdf 

Attention Is All You Need [Vaswani et al. 17]

https://arxiv.org/pdf/1706.03762.pdf
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Graph Neural 
Networks

4
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A graph
• Node: a concept
• Edge: a connection between concepts

5

Nodes

Edges
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Deep learning on graphs

• Generalizations of neural networks that can operate on 
graph-structured domains:
– Scarselli et al. “The Graph Neural Network Model”, IEEE Trans. Neur. Net 2009.
– Defferrard et al. “Convolutional Neural Networks on Graphs with Fast Localized Spectral 

Filtering”, NeurIPS 2016
– Kipf&Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, ICLR 

2017.
– Gilmer et al. “Neural Message Passing for Quantum Chemistry”. ICML 2017
– Koke&Cremers “HoloNets: Spectral Convolutions do extend to Directed Graphs”, ICLR 

2024.

• Key challenges:
– Variable sized inputs (number of nodes and edges)
– Need invariance to node permutations

6
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General Idea 1: Message passing

Graph with optional node and edge feature vectors

7

Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

Graph with optional node 
and edge feature vectors

https://tkipf.github.io/graph-convolutional-networks/
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Graph with optional node and edge feature vectors

8

Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Graph with optional node 
and edge feature vectors

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

General Idea 1: Message passing

https://tkipf.github.io/graph-convolutional-networks/
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Message Passing Networks
• We can divide the propagation process in two steps: 

‘node to edge’ and ‘edge to node’ updates.

9

Initial Graph ‘Node to Edge’ Update ‘Edge to Node’ Update 

Node embeddings
Edge embeddings

Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.  2018
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‘Node to edge’ updates
• At every message passing step    , first do:

10

Embedding of node i in 
the previous message 

passing step

Embedding of node 
j in the previous 

message passing 
step

Embedding of 
edge (i,j) in the 

previous message 
passing step
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‘Node to edge’ updates
• At every message passing step    , first do:
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‘Node to edge’ updates
• At every message passing step    , first do:

12

Learnable function (e.g. 
MLP) with shared 

weights across the 
entire graph
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‘Edge to node’ updates
• After a round of edge updates, each edge 

embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:

13

message

message
message

Order invariant 
operation (e.g. 

sum, mean, max)

Neighbors of 
node i
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‘Edge to node’ updates
• After a round of edge updates, each edge 

embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:

14

Learnable function (e.g. MLP) with shared 
weights across the entire graph

The aggregation 
provides each node 

embedding with 
contextual information 

about its neighbors
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General Idea 2: Spectral Approach
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How to extend Convolutions to Graphs?
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How to extend Convolutions to Graphs?
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How to extend Convolutions to Graphs?

Only applies to 

undirected graphs!
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General Idea 3: 
Holomorophic Functional Calculus

• Key idea: Extend spectral convolutions to graphs by 
making use of
– complex analysis
– holomorphic functions & the Cauchy integral formula
– tools from spectral theory

[Koke & Cremers “HoloNets: Spectral Convolutions do extend to Directed Graphs”, ICLR 2024]
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General Idea 3: 
Holomorophic Functional Calculus

[Koke & Cremers “HoloNets: Spectral Convolutions do extend to Directed Graphs”, ICLR 2024]
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GNN Applications
• Node or edge classification

– identifying anomalies such as spam, fraud
– Relationship discovery for social networks, search 

networks

30
https://gm-neurips-2020.github.io/master-deck.pdf
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GNN Applications
• Scene graph generation

31

[Xu et al. ‘17] Scene Graph Generation by Iterative Message Passing
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GNN Applications
• 3D Mesh Classification 

32
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GNN Applications
• 3D mesh generation

33
[Dai and Niessner, “Scan2Mesh: From Unstructured Range Scans to 3D Meshes”, CVPR 2019]



Introduction to Deep LearningDaniel Cremers

GNN Applications
• Modeling epidemiology 

– Spatio-temporal graph

34
https://gm-neurips-2020.github.io/master-deck.pdf
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GNN Applications
• Traffic forecasting

35

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
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Generative Models

36
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Generative Models
• Given training data, how to generate new samples 

from the same distribution

37

Source: https://openai.com/blog/generative-models/
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https://openai.com/blog/generative-models/
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Generative Models

38

Explicit Density Implicit Density

Tractable Density Approximate Density

Variational Markov Chain

Markov Chain Direct

Variational Autoencoder Boltzmann Machine

GSN GANFully Visible Belief Nets

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017

Denoising Diffusion Probabilistic Models (DDPM)
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Autoencoders

39
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Autoencoders

• Can be used as a basic generative models

• Unsupervised approach for learning a lower-
dimensional feature representation from unlabeled
training data

40
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Autoencoders
• From an input image 

to a feature 
representation 
(bottleneck layer)

• Encoder: a CNN in 
our case

41

Conv

Input Image
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Autoencoder: training

42

Conv Transpose Conv

Input Image Output Image

Reconstruction
Loss (like L1, L2)
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Autoencoder: training

43

Latent space z
dim (z) < dim (x)

In
p

ut
 x

R
ec
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n 

x’

Input images

Reconstructed images
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Autoencoder: training
• No labels 

required

• We can use 
unlabeled data 
to first get its 
structure

44

Latent space z
dim (z) < dim (x)

In
p

ut
 x
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Autoencoder

45
Conv Transposed conv
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Decoder as Generative Model

46

Latent space 𝑧
dim 𝑧 < dim(𝑥)

Test time:
-> reconstruction from 

‘random’ vector

Output Image

Reconstruction
Loss (often L2)
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Why using autoencoders?
• Use 1: pre-training, as mentioned before

– Image → same image reconstructed
– Use the encoder as “feature extractor”

• Use 2: Use them to get pixel-wise predictions
– Image → semantic segmentation
– Low-resolution image → High-resolution image
– Image → Depth map

47
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Variational 
Autoencoders

48
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Autoencoders
• Encode the input into a representation (bottleneck) 

and reconstruct it with the decoder

49

Conv Transpose Conv

Encoder Decoder

𝑥 ෤𝑥

𝑧
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Autoencoders
• Encode the input into a representation (bottleneck) 

and reconstruct it with the decoder

50

Source: https://bit.ly/37ctFMS
 

Latent space learned
by autoencoder on MNIST

https://bit.ly/37ctFMS
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𝑧

Variational Autoencoder

51

Conv Transpose Conv

Encoder Decoder

𝑥 ෤𝑥𝜙 𝜃

𝑞𝜙 𝑧 𝑥 𝑝𝜃 ෤𝑥 𝑧)



Introduction to Deep LearningDaniel Cremers

Variational Autoencoder

52

Conv Transpose Conv

Goal: Sample from the latent distribution to generate new outputs!

𝑧

𝑥 ෤𝑥𝜙 𝜃
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Variational Autoencoder
• Latent space is now a distribution
• Specifically it is a Gaussian

53

Encoder Decoder

Sample
𝑥 𝜙 𝜃 ෤𝑥

𝜇𝑧|𝑥 

Σ𝑧|𝑥 𝑧

𝑧|𝑥 ∼ 𝒩(𝜇𝑧|𝑥, Σ𝑧|𝑥) 
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Variational Autoencoder
• Latent space is now a distribution
• Specifically it is a Gaussian

54

Encoder
Mean

Diagonal covariance

𝑥 𝜙

𝜇𝑧|𝑥 

Σ𝑧|𝑥

𝑧|𝑥 ∼ 𝒩(𝜇𝑧|𝑥, Σ𝑧|𝑥) 
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Variational Autoencoder
• Training: loss makes sure the latent space is close to a 

Gaussian and the reconstructed output is close to the 
input

55

Encoder Decoder

Sample
𝑥 𝜃 ෤𝑥

𝜇𝑧|𝑥 

Σ𝑧|𝑥 𝑧

𝑧|𝑥 ∼ 𝒩(𝜇𝑧|𝑥, Σ𝑧|𝑥) 

𝜙
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Variational Autoencoder
• Test: Sample from the latent space

56

Decoder

Sample 𝜃 ෤𝑥

𝜇𝑧|𝑥 

Σ𝑧|𝑥 𝑧

𝑧|𝑥 ∼ 𝒩(𝜇𝑧|𝑥, Σ𝑧|𝑥) 
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Autoencoder vs VAE

57

https://camo.githubusercontent.com/159ce00b17959f1638b6c6fcfb78408492aba497/687474703a2f2f6b766672616e732e636f6d2f636f6e74656e742f696d616765732f323031362f30382f6d6e6973742e6a7067

Autoencoder Variational Autoencoder Ground Truth
Source: https://github.com/kvfrans/variational-autoencoder 

https://camo.githubusercontent.com/159ce00b17959f1638b6c6fcfb78408492aba497/687474703a2f2f6b766672616e732e636f6d2f636f6e74656e742f696d616765732f323031362f30382f6d6e6973742e6a7067
https://github.com/kvfrans/variational-autoencoder
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Generating data

58

Degree of smile

Head pose
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Autoencoder Overview
• Autoencoders (AE)

– Reconstruct input
– Unsupervised learning

• Variational Autoencoders (VAE)
– Probability distribution in latent space (e.g., Gaussian)
– Interpretable latent space (head pose, smile)
– Sample from model to generate output

59
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Generative Adversarial 
Networks (GANs)

60
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Generative Adversarial Networks (GANs)

61

Source: https://github.com/hindupuravinash/the-gan-zoo 

https://github.com/hindupuravinash/the-gan-zoo
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Autoencoder

62
Conv Transposed conv



Introduction to Deep LearningDaniel Cremers

Decoder as Generative Model

63

Latent space 𝑧
dim 𝑧 < dim(𝑥)

Test time:
-> reconstruction from 

‘random’ vector

Output Image

Reconstruction
Loss (often L2)
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Decoder as Generative Model

64

Latent space z
dim (z) < dim (x)

“Test time”:
-> reconstruction from 

‘random’ vector

Reconstruction Loss 
Often L2, i.e., sum of squared dist.
-> L2 distributes error equally
    -> mean is opt.
    -> res. Is blurry

Instead of L2, can we 
“learn” a loss function?
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Generative Adversarial Networks (GANs)

65

[Goodfellow et al., NIPS‘14] Generative Adversarial Networks (slide from McGuinness)

𝑧
𝐺

𝐺(𝑧)

𝐷

𝐷(𝐺(𝑧))
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Generative Adversarial Networks (GANs)

66

𝑧
𝐺

𝐺(𝑧)

𝐷

𝑥

𝐷(𝑥)

𝐷(𝐺(𝑧))

[Goodfellow et al., NIPS‘14] Generative Adversarial Networks (slide from McGuinness)
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Generative Adversarial Networks (GANs)

67

real data fake data

[Goodfellow, NIPS‘16] Tutorial: Generative Adversarial Networks 
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GANs: Loss Functions

• Minimax Game:
– G minimizes probability that D is correct
– Equilibrium is saddle point of discriminator loss

68

• Discriminator loss

• Generator loss binary cross entropy

• D provides supervision (i.e., gradients) for G
[Goodfellow et al., NIPS‘14] Generative Adversarial Networks 

𝐽 𝐷 = −
1

2
 𝔼𝐱∼𝑝𝑑𝑎𝑡𝑎

log 𝐷 𝒙 −
1

2
𝔼𝒛 log 1 − 𝐷 𝐺 𝒛

𝐽(𝐺) = −𝐽 𝐷



Introduction to Deep LearningDaniel Cremers

GAN Applications

69
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BigGAN: HD Image Generation

70

[Brock et al., ICLR‘18] BigGAN : Large Scale GAN Training for High Fidelity Natural Image Synthesis 



Introduction to Deep LearningDaniel Cremers

StyleGAN: Face Image Generation

71

[Karras et al., ‘18] StyleGAN : A Style-Based Generator Architecture for Generative Adversarial Networks 
[Karras et al., ‘19] StyleGAN2 : Analyzing and Improving the Image Quality of StyleGAN
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Cycle GAN: Unpaired Image-to-Image Translation

72
[Zhu et al., ICCV‘17] Cycle GAN : Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 
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SPADE: GAN-Based Image Editing

73
[Park et al., CVPR‘19] SPADE : Semantic Image Synthesis with Spatially-Adaptive Normalization 
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Texturify: 3D Texture Generation

74𝑧0 𝑧1 𝑧2[Siddiqui et al., ECCV‘22] 
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Diffusion

75
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Diffusion – Search Interest

76

Source: Google Trends
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Diffusion Models
• Class of generative models

• Achieved state-of-the-art image generation (DALLE-
2, Imagen, StableDiffusion)

• What is diffusion?

77
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Diffusion Process
• Gradually add noise to input image 𝑥0 in a series of 𝑇 

time steps

• Neural network trained to recover original data

78
[Ho et al. ’20] Denoising Diffusion Probabilistic Models
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Forward Diffusion
• Markov chain of 𝑇 steps

– Each step depends only on previous

• Adds noise to 𝑥0 sampled from real distribution 𝑞 𝑥

𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; 𝝁𝑡 = 1 − 𝛽𝑡𝑥𝑡−1, 𝚺𝑡 = 𝛽𝑡𝐈)

79
[Ho et al. ’20] Denoising Diffusion Probabilistic Models

identity matrix
mean variance
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Forward Diffusion
• Go from 𝑥0 to 𝑥𝑇:

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

• Efficiency?

80
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Reparameterization
• Define 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 = ς𝑠=0

𝑡 𝛼𝑠 , 𝜖0, … , 𝜖𝑡−1~𝒩(𝟎, 𝐈)

81

𝑥𝑡 = 1 − 𝛽𝑡𝑥𝑡−1 + 𝛽𝑡𝜖𝑡−1

= 𝛼𝑡𝑥𝑡−1 + 1 − 𝛼𝑡𝜖𝑡−1

= 𝛼𝑡𝛼𝑡−1𝑥𝑡−2 + 1 − 𝛼𝑡𝛼𝑡−1𝜖𝑡−2

= 𝛼𝑡𝑥0 + 1 − 𝛼𝑡𝜖0

𝑥𝑡~𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡; 𝛼𝑡𝑥0, 1 − 𝛼𝑡 𝐈)
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Reverse Diffusion
• 𝑥𝑇→∞ becomes a Gaussian distribution

• Reverse distribution 𝑞(𝑥𝑡−1|𝑥𝑡) 
– Sample 𝑥𝑇~𝒩 𝟎, 𝐈  and run reverse process
– Generates a novel data point from original distribution

• How to model reverse process?

82
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Approximate Reverse Process
• Approximate 𝑞(𝑥𝑡−1|𝑥𝑡) with parameterized model 𝑝𝜃 

(e.g., deep network)
𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝜃 𝑥𝑡 , 𝑡 )

𝑝𝜃(𝑥0:𝑇) = 𝑝𝜃(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃 𝑥𝑡−1 𝑥𝑡

83
[Ho et al. ’20] Denoising Diffusion Probabilistic Models
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Training a Diffusion Model
• Optimize negative log-likelihood of training data

𝐿𝑉𝐿𝐵

= 𝔼𝑞[𝐷𝐾𝐿 𝑞(𝑥𝑇|𝑥0||𝑝𝜃(𝑥𝑇)

+ ෍

𝑡=2

𝑇

𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 ||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 − log 𝑝𝜃(𝑥0|𝑥1)]

• Nice derivations: https://lilianweng.github.io/posts/2021-07-
11-diffusion-models

84

𝐿𝑇

𝐿𝑡−1 𝐿0
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Training a Diffusion Model

• 𝐿𝑡−1 = 𝐷𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 ||𝑝𝜃 𝑥𝑡−1 𝑥𝑡

• Comparing two Gaussian distributions
• 𝐿𝑡−1 ∝ ෥𝜇𝑡 𝑥𝑡 , 𝑥0 − 𝜇𝜃(𝑥𝑡 , 𝑡) 2

• Predicts diffusion posterior mean

85
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Diffusion Model Architecture
• Input and output dimensions must match

• Highly flexible to architecture design

• Commonly implemented with U-Net architectures

86
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Applications for Diffusion Models
• Text-to-image

87
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Applications for Diffusion Models
• Image inpainting & outpainting

88
https://github.com/lkwq007/stablediffusion-infinity
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Applications for Diffusion Models
• Text-to-3D Neural Radiance Fields

89

https://dreamfusion3d.github.io/
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Realistic 3D Human Motion Generation
 with Anisotropic Diffusion

90
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Input: body joint positions up to time T

Past Future

Output: body joint positions from time T

3D Human Motion Prediction

91
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Input: body joint positions up to time T

Past Future

Output: body joint positions from time T

3D Human Motion Prediction

92
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Input: body joint positions up to time T

Past Future

Output: body joint positions from time T

3D Human Motion Prediction

93
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3D Human Motion Prediction

94
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Principal Component Analysis of latent space:

Anisotropies in Latent Space
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Isotropic

Recap: Isotropic Diffusion

96
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Isotropic:

Isotropic vs. Anisotropic Diffusion

97
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Isotropic:

Ours:

Isotropic vs. Anisotropic Diffusion

98
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Ours:

A: adjacency matrix of the skeleton graph 

Isotropic vs. Anisotropic Diffusion

99
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Diverse yet realistic

DiverseSampling CoMusion OursGT

Comparison to Baselines

100
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DiverseSampling CoMusion OursGT

Future coherent with past motion

Comparison to Baselines

101
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Reinforcement 
Learning

102
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Learning Paradigms in ML

103

Supervised
Learning

E.g., classification, 
regression

Labeled data

Find mapping from
input to label

Unsupervised
Learning

E.g., clustering, 
anomaly detection 

Unlabeled data

Find structure in data

Reinforcement
Learning

Sequential data

Learning by
interaction with
the environment
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In a Nutshell

• RL-agent is trained using the 
“carrot and stick“ approach

• Good behavior is 
encouraged by rewards

• Bad behavior is discouraged 
by punishment

104

Source: quora.com
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Agent and Environment 

105

Observation, ot

EnvironmentAgent

Action, at

Reward, rt
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Characteristics of RL
• Sequential, non i.i.d. data (time matters)

• Actions have an effect on the environment 
-> Change future input

• No supervisor, target is approximated by the reward 
signal

106
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History and State
• The agent makes decisions based on the history h of 

observations, actions and rewards up to time-step t

• The state s contains all the necessary information 
from h -> s is a function of h

107

ℎ𝑡 = 𝑜1, 𝑎1, 𝑟1, … , 𝑎𝑡−1, 𝑟𝑡−1, 𝑜𝑡

𝑠𝑡 = 𝑓 ℎ𝑡

Source: UCL Reinforcement Learning
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Markov Assumption
• Problem: History grows linearly over time
• Solution: Markov Assumption
• A state St is Markov if and only if:

ℙ 𝑠𝑡+1|𝑠𝑡 = ℙ 𝑠𝑡+1|𝑠1, … 𝑠𝑡

• “The future is independent of the past given the 
present“

108Source: UCL Reinforcement Learning
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Agent and Environment 
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Observation, ot

EnvironmentAgent

Reward, rt

Action, at• Reward and next state 
are functions of 
current observation ot

and action at only
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Mathematical Formulation
• The RL problem is a Markov Decision Process (MDP) 

defined by: 𝒮, 𝒜, ℛ, ℙ, 𝛾

𝒮 : Set of possible states
𝒜 : Set of possible actions
ℛ : Distribution of reward given (state, action) pair
ℙ : Transition probability of a (state, action) pair
𝛾 : Discount factor (discounts future rewards)

110Source: Stanford cs231n
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Components of an RL Agent

• Policy 𝜋 : Behavior of the agent 
-> Mapping from state to action: 𝑎 = 𝜋(𝑠)

• Value-, Q-Function: How good is a state or (state, 
action) pair
-> Expected future reward

111Source: UCL Reinforcement Learning
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Taxonomy of RL Algorithms

112

RL Algorithms

Model-Free RL Model-Based RL

Q-Learning Learn the Model

DQN

Policy Optimization Given the Model

C51

QR-DQN

HER

DDPG

TD3

SAC

Policy Gradient

A2C / A3C

PPO

TRPO

World Models

I2A

MBMF

MBVE

Alpha Zero

Source: spinningup.openai.com
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RL Milestones: Playing Atari

• Mnih et al. 2013, first appearance of DQN
• Successfully learned to play different Atari games 

like Pong, Breakout, Space Invaders, Seaquest and 
Beam Rider

113

[Mnih et al., NIPS’13] Playing Atari with Deep Reinforcement Learning
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RL Milestones: AlphaZero (StarCraft)
• Model: Transformer network with a LSTM core
• Trained on 200 years of StarCraft play for 14 days
• 16 Google v3 TPUs
• December 2018:

Beats MaNa, a 
professional StarCraft
player (world rank 13)

114
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I2DL Summary

115
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Machine Learning Basics
• Unsupervised vs 

Supervised Learning

• Linear vs logistic 
regression

• Data splitting

116
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Intro to Neural Networks
• Backpropagation • Activation functions

• Loss functions
– Comparison & effects

117
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Training Neural Networks
• Gradient Descent/ SGD • Regularization

• Parameter             search 
& interpretation

118

Source: http://ruder.io/optimizing-gradient-descent/, 
https://srdas.github.io/DLBook/ImprovingModelGeneralization.html, http://cs231n.github.io/neural-

networks-3/

http://ruder.io/optimizing-gradient-descent/
https://srdas.github.io/DLBook/ImprovingModelGeneralization.html
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
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Typology of Neural Networks
• CNNs

• RNNs

• Autoencoder

• GANs

119

real or fake 
pair?

𝑁 + 2 ⋅ 𝑃 − 𝐹

𝑆
+ 1

×
𝑁 + 2 ⋅ 𝑃 − 𝐹

𝑆
+ 1
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Other DL Courses

120
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Deep Learning at TUM

121

Intro to 
Deep 

Learning

ADL for 
Computer 

Vision 
(Niessner)

DL for 
Medical 
Applicat. 
(Menze)

Machine 
Learning

(Günneman)

DL in 
Robotics 

(Bäuml)

DL for 
Physics
(Thuerey)

ML for 3D 
Geometry

(Dai)

3D 
Computer 

Vision 
(Cremers)
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Next Dates and Exam
• Guest Lecture by Ben Poole!

– Monday July 17th at 7pm (CEST)
– Join via Live Stream: 

https://www.youtube.com/watch?v=xk-TibnYEDA 

• Exam 
– There will NOT be a retake exam
– Neither cheat sheet nor calculator during the exam

122

https://www.youtube.com/watch?v=xk-TibnYEDA
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Good Luck 
in the Exam ☺
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References for Further Reading
• https://towardsdatascience.com/intuitively-

understanding-variational-autoencoders-1bfe67eb5daf

• https://phillipi.github.io/pix2pix/

• http://cs231n.stanford.edu/slides/2017/cs231n_2017_le
cture13.pdf

128

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://phillipi.github.io/pix2pix/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
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