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A SiImple Task
Image Classification
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Image Classification

Daniel Cremers Introduction to Deep Learning



Daniel Cremers Introduction to Deep Learning 5



Image Classification

Occlusions

| 77 N
= @
= *
-—
et

Daniel Cremers Introduction to Deep Learning 6



Image Classification

Background clutter
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— Image Classification
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Representation
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A Simple Classifier
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Nearest Neighbor —
NN classifier = dog

£

distance
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Nearest Neighbor

K-NN classifier = cat

Daniel Cremers

distance
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Nearest Neighbor

The Data NN Classifier 5NN Classifier

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?
\What are we actually learning?

Daniel Cremers Introduction $oureephttpsircommons.wikimedia.org/wiki/File:Data3classes.png
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Nearest Neighbor

L1 distance : |x — c|
* Hyperparameters < L2 distance : ||x — c]|»
No. of Neighbors: k

* These parameters are problem dependent.

« How do we choose these hyperparameters?
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Machine Learning for
Classification
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Machine Learning

« How can we learn to perform image classification?

Task Experience

Daniel Cremers Introduction to Deep Learning
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Machine Learning

 My(I) = {DOG, CAT}

/IN N\

Model Image Class Label

Model Params o

i
DOG
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Machine Learning

« Mg(I) = {DOG, CAT} Given i images with train labels

/IN N\

Model Image Class Label

Model Params

0 = argmin),; D(My(I;) = Y;) _
6

/ /

‘Distance’ function {DOG, CAT}

) ) ) A el 7 w b
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Basic Recipe for Machine Learning
« Split your data

00% 20% 20%

train validation

!

Find model params 6

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning
« Split your data

00% 20% 20%

train validation

\ J
I

Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning

A\

Test set is only used oncel

\_

J
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Machine Learning

« How can we learn to perform image classification?

Task Experience

Performance
measure

Daniel Cremers Introduction to Deep Learning
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Machine Learning

Unsupervised learning Supervised learning

« |abels or target classes
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Machine Learning

Unsupervised learning Supervised learning

CAT

DO
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Machine Learning

Unsupervised learning Supervised learning

CAT

« No label or target class

« Find out properties of
the structure of the
data

« Clustering (k-means,
PCA, etc)
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Machine Learning

Unsupervised learning Supervised learning

CAT

U h0G DOG

DOG
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Machine Learning

Unsupervised learning Supervised learning

CAT
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning N

iNteraction |
s> | Environment
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning .

reward |
Environment
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Machine Learning

Supervised learning

Introduction to Deep Learning

31



Let's start with a simple linear Modell

Daniel Cremers

LInear Declision
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What are the pros
and cons for using
LInear decision
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L Inear Regression
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Linear Regression

« Supervised learning

« Find a linear model that explains a target y given
iNnputs x
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Linear Regression

Training

s —
Jata POIRtS

Input (e.g., image,
measurement) Labels
(e.g. cat/dog)

> 0
Model parameters
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Linear Regression

can be parameters of a

Training Neural I?lllet\x/ork
{xl:n’ yl:n} ' > 0
Data points Model parameters
Testing
Estimation
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Linear Prediction

« A linear model is expressed in the form

— Input dimension

Vi =

]T\

INnput data, features

d
=1
welights (i.e., model parameters)

Daniel Cremers Introduction to Deep Learning
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Linear Prediction

« A linear model is expressed in the form
d

yi = 90 + ZXUH] = HO + Xl'191 + xl-292 + et xl-de

> X
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Linear Prediction

0
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Linear Prediction

X11 X1a || [ 61
X21 X2d 0,
Xn1 Xnd 1 1L Hd i \

(1 X110 Xaa [0
1 X21 = X2q | |64

1 Xp1 " Xna
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Linear Prediction

y = X6 Input features
Prediction (one sample has d
\ / features)
(V1) 1 [X11 X1d|] 0o
Yol |1 X21 0 X2q | |01 T—
S I : : Model
Y 1 Xn1 Xna 116, parameters

(d weights and 1 bias)
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Temperature
of the building

521 -
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Linear Prediction
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Linear Prediction

\}@ How do we
@@\ Q\@ de  obtainthe
Q O
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How to Obtain the Model?

Labels (ground truth)
y

Data pcﬂnts

‘ Optimization ‘

| 0SS
function

Model parameters Egﬂnanon

6 oy
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How to Obtain the Model?

« Loss function: measures how good my estimation s
(how good my model is) and tells the optimization
method how to make it better.

« Optimization: changes the model in order to improve
the loss function (L.e., to iImprove my estimation).
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Linear Regression: Loss Function

Yy o
® ®
o o Prediction:
Q
Pe o Temperature
T ° of the building
> X
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Linear Regression: Loss Function

®

A

y o
e
o o Prediction:
Q

Pe o Temperature

1 ° of the building
> X
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Linear Regression: Loss Function

> X

- 1 n Objective function
Minimizing J(8) = 52(% - 1) Energy
=1 Cost function p

Daniel Cremers Introduction to Deep Learning



Optimization: Linear Least Squares

* Linear least squares: an approach to fit a linear model
to the data

1 n
mein J(8) = ;Zl:(f’i — yi)?

« Convex problem, there exists a closed-form solution
that is unique.

Daniel Cremers Introduction to Deep Learning 49



Optimization: Linear Least Squares

| 1. ., Ix :
min /(0) = EZ(%‘ —yi)° = EZ(XL'B — Vi)
=1 1=1
n training samples The estimation comes

from the linear model

Daniel Cremers Introduction to Deep Learning
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Optimization: Linear Least Squares

| 1 . 1N )
min /(0) = EZ(%‘ —y) = EZ(XL'B — ¥i)
=1 =1
min /(8) = (X6 —y)" (X0 — ) Matrix notation
n training samples, n labels
each input vector has
sized
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Optimization: Linear Least Squares

min J(0) = EZ(% —yi)° = EZ(XL'H —¥i)
i=1 i=1
min /(8) = (X6 —y)" (X0 — ) Matrix notation
More on matrix notation in the next exercise session |
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Optimization: Linear Least Squares

min J(08) = EZ(% —yi)‘ = EZ(XL'H —¥i)
1= l=

min J(6) = (X6 —y)" (X6 - y)

l Convex

3/(6)
30

Optimum =>

lel Cremers Introduction to Deep Learning
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Optimization Details in the

exercise
session!

0](6)

T _ oxTXE — 2XTy =
Y y=0

o = (XTX)"1XTy

T

We have found True output

! ahalyticat Ir;puts: Outt5|de Temperature of
solution to a emperature, the building
convex problem number of people,
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s this the best Estimate?

e |east squares estimate

1 n
J(08) = aZ(JA’i — ¥i)?
i=1

Daniel Cremers Introduction to Deep Learning
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Maximum Likelinood
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Maximum Likelihood Estimate

Paata(YIX) True underlying distribution

|

Pmoaet(Y1X,8)  Parametric family of distributions

\

Daniel Cremers Introduction to Deep Learning
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Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations,

Pmodel (Y|Xr 9)

P

Observations from Paata (¥Y1X)
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Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations, by finding the parameter
values that maximize the likelihood of making the
observations given the parameters.

Oy = arg meax pmodel(lel 0)
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Maximum Likelihood Estimate

« MLE assumes that the training samples are
iIndependent and generated by the same probability
distribution

n
pmodel(lex 9) — 1_[ pmodel()’i |Xir 0)

T i=1

.1.d." assumption

Daniel Cremers Introduction to Deep Learning



Maximum Likelihood Estimate

n |
Oy = arg mgx Pmodel (VilXi, @)

i=1

n
Oy = arg max z log| Pmoder (VilXi, 0)
i=1

Logarithmic property logab = loga + logb

Daniel Cremers Introduction to Deep Learning
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Back to Linear Regression

n
Oy = arg max 2 logl Pmoder (VilX;, @)
=1

l

What shape does our
orobability distribution
nave’
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Back to Linear Regression

p(yi|X;, @) What shape does our probability
distribution have?
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Back to Linear Regression

Gaussian / Normal

p(yilx;, @) distribution

Assuming Yi = N(x;0,0%) =x;0 + N'(0,0°)

mean
Gaussian.,

1

p(y;) = o)

Daniel Cremers Introduction to Deep Learning
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Back to Linear Regression

p(y;lx;, 0) =

Assuming Yi = N(x;0,0%) =x;0 + N'(0,0°)
?

Gaussian., |

Y — 1 0_2(3’1'@2
46, \/m e 2

Daniel Cremers Introduction to Deep Learning
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Back to Linear Regression

1
p(yilx;,0) = (27102)‘1/23_272(”2

Assuming Yi = N(x;0,0%) =x;0 + N'(0,0°)
?

Gaussian., |

D — 1 0_2(3’1'@2
46, \/m e 2
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Back to Linear Regression

EETP -
p(y;|x;, 8) <(21a?)~1/2e 257 @

Original = i
optimization Omr = arg max z Pmodet VilXi, 0)
i=1

oroblem
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Back to Linear Regression

ZIOg [(27‘[0‘2) Ze 202(3" x,9)2]

L= l Canceling log and e
n n
1 2 1 2
Z—Elog (2mo )+Z 5.2 (vi — x;0)
l= 1=

l Matrix notation

-glogama 5 (y — X6)" (y — X6)

Introdu UHTODFH Learning



Back to Linear Regression

n
Oy = arg max z log Pmoder (VilXi, @) >
=1

— E108(27T02) — —1 (y —X0)'(y — X0)
2 2072
Details in th How can we find
exereciies;gggiinl M =0 the estimate of
' 00 theta?
v

0 = (XTX)"1xTy
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Linear Regression

« Maximum Likelihood Estimate (MLE) corresponds to
the Least Squares Estimate (given the assumptions)

« |ntroduced the concepts of loss function and
optimization to obtain the best model for regression

Daniel Cremers Introduction to Deep Learning
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Regression vs Classification

« Regression: predict a continuous output value (e.q.,
temperature of a room)

« Classification: predict a discrete value
— Binary classification: output is either 0 or 1 _
— Multi-class classification: set of N classes

Daniel Cremers Introduction to Deep Learning
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L ogistic Regression
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Sigmoid for Binary Predictions

1
14+e™™

X o(x) =
1

Can be interpreted
as a probability

yi =p(; = 1|x;,60)
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Spoiler Alert: 1-Layer Neural Network

1
14+e™™

X0 o(x) =
1

Can be interpreted
as a probability
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Logistic Regression: Max. leeUhood
+ Probability of a binary Output ﬁ"! '

p(ylX,0) =9 = nyly‘(l 51

« Maximum Likelihood Estimate Yi=pW: =1|x;,6)

Oy = arg mglx v|X, 9)
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Logistic Regression: Loss Function

poIX ) =9=| |

=1

9711 = 90

n
logp(ylX,0) = Z log
=1

(311 - 9)@-9)

n
= 2 yilogy; + (1 —y;) log(1 — ;)

=1

aniel Cremers Introduction to De
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Logistic Regression: Loss Function

L, y) = —lyilogy; + (1 —y;) log(1 — ¥;)]

Referred to as binary cross-entropy loss (BCE) ‘

« Related to the multi-class loss you will see in this
course (also called softmax [oss)
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Logistic Regression: Optimization
« |Loss for each training sample:
L&, yi) = —[yilogd; + (1 — y;) log(1 — ¥;)]

e Overall loss

c(6) = ——z LSuy1)
/ yi = 0(x;0)
n

Minimization 1
= —52 yilogy; + (1 —y;)log(1 -

Daniel Cremers Introduction to Deep Learning



Logistic Regression: Optimization

 No closed-tform solution

« Make use of an iterative method = gradient descent

Gradient descent -
later on!

Daniel Cremers Introduction to Deep Learning



Insights from the first lecture

« \We can learn from experience
-> Intelligence, certain ability to infer the future!

« Even linear models are often pretty good for
complex phenomena: e.g., weather:

— Linear combination of day-time, day-year etc. Is often
pretty good

Daniel Cremers Introduction to Deep Learning



Next Lectures

« Next exercise session: Math Recap |

 Next Lecture: Lecture 3.

— Jumping towards our first Neural Networks and
Computational Graphs

Daniel Cremers Introduction to Deep Learning



References for further Reading

« Cross validation:
— https.//medium.com/@zstern/k-fold-cross-validation-

explained-Raebagoebb’

— https.//towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b6i1beca4bt

« General Machine Learning book:
— Pattern Recognition and Machine Learning. C. Bishop.

Daniel Cremers Introduction to Deep Learning
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