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Basics
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AI vs ML vs DL
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Artificial Intelligence

Machine Learning

Deep
Learning
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A Simple Task: 
Image Classification
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Image Classification

4

Task
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Image Classification
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Image Classification
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Occlusions
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Image Classification

7

Background clutter
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Pose AppearanceIllumination
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Representation

Image Classification
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A Simple Classifier
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Nearest Neighbor

11

?
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Nearest Neighbor

12
distance

NN classifier = dog
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Nearest Neighbor

13
distance

k-NN classifier = cat
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Nearest Neighbor

14Source: https://commons.wikimedia.org/wiki/File:Data3classes.png

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?

NN Classifier 5NN ClassifierThe Data

What are we actually learning?

https://commons.wikimedia.org/wiki/File:Data3classes.png
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Nearest Neighbor

• Hyperparameters

• These parameters are problem dependent.

• How do we choose these hyperparameters?

15

L2 distance : ||𝑥 − 𝑐||2 

L1 distance : |𝑥 − 𝑐|

No. of Neighbors: 𝑘 
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Machine Learning for 
Classification

16
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Task

Image 
classification

Experience

Data

Machine Learning
• How can we learn to perform image classification?

17
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DOG DOG

DOG

CAT

CAT

CAT

Machine Learning
• 𝑀𝜃 𝐼 = {DOG, CAT}

18

Model

Model Params

Image Class Label
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DOG DOG

DOG

CAT

CAT

CAT

Machine Learning
• 𝑀𝜃 𝐼 = {DOG, CAT}

 𝜃∗ = argmin
𝜃

σ𝑖 D(𝑀𝜃 𝐼𝑖 − 𝑌𝑖)

19

Model

Model Params

Image Class Label

{DOG, CAT}“Distance” function

Given 𝒊 images with train labels
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Basic Recipe for Machine Learning
• Split your data

20

Find model params 𝜃

train testvalidation

20%60% 20%

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning
• Split your data

21

Find your hyperparameters

train testvalidation

20%60% 20%

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning
• Split your data

22

Find your hyperparameters

train testvalidation

20%60% 20%

Test set is only used once!
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Task

Image 
classification

Experience

Data
Performance 

measure

Accuracy

Machine Learning
• How can we learn to perform image classification?

23
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Machine Learning

24

• Labels or target classes

Unsupervised learning Supervised learning
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DOG DOG

DOG

CAT

CAT

CAT

Machine Learning

25

Unsupervised learning Supervised learning
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DOG DOG

DOG

CAT

CAT

CAT

Machine Learning

• No label or target class

• Find out properties of 
the structure of the 
data

• Clustering (k-means, 
PCA, etc.)

26

Unsupervised learning Supervised learning
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Machine Learning

27

Unsupervised learning Supervised learning

DOG DOG

DOG

CAT

CAT

CAT
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Machine Learning

28

Unsupervised learning Supervised learning

DOG DOG

DOG

CAT

CAT

CAT
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Reinforcement learning

Agents Environment
interaction 

Machine Learning

29

Unsupervised learning Supervised learning
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Reinforcement learning

Agents Environment
reward

Machine Learning

30

Unsupervised learning Supervised learning
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Reinforcement learning

Agents Environment
reward

Machine Learning

31

Unsupervised learning Supervised learning
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Linear Decision Boundaries

32

Let’s start with a simple linear Model!

What are the pros 
and cons for using 

linear decision 
boundaries?
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Linear Regression

33
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Linear Regression

• Supervised learning

• Find a linear model that explains a target 𝒚 given 
inputs 𝒙

34

𝒙

𝒚
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Training

Model parameters

Linear Regression

35

{𝒙1:𝑛, 𝒚1:𝑛}

Data points
𝜽

Input (e.g., image, 

measurement) Labels 
(e.g., cat/dog)

Learner
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Training

Testing

Learner
Model parameters

Predictor

Linear Regression

36

can be parameters of a 
Neural Network

{𝒙1:𝑛, 𝒚1:𝑛}

Data points
𝜽

𝑥𝑛+1, 𝜽 ො𝑦𝑛+1

Estimation
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Input data, features

weights (i.e., model parameters)

input dimension

Linear Prediction
• A linear model is expressed in the form

37

ො𝑦𝑖 = ෍

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗
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ො𝑦𝑖 = 𝜃0 + ෍

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗 = 𝜃0 + 𝑥𝑖1𝜃1 + 𝑥𝑖2𝜃2 + ⋯ + 𝑥𝑖𝑑𝜃𝑑

bias

Linear Prediction
• A linear model is expressed in the form

38
𝒙

𝒚

𝜃0
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Temperature 
of a building

Outside 
temperature

Number of 
people

Sun 
exposure

Level of 
humidity

Linear Prediction

39

𝜃1 𝜃3

𝜃2 𝜃4

𝑥1

𝑥2

𝑥3

𝑥4
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Linear Prediction

40

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛

= 𝜃0 +

𝑥11

𝑥21

⋯
⋯

𝑥1𝑑

𝑥2𝑑

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑑

∙

𝜃1

𝜃2

⋮
𝜃𝑑

 

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛

 =

1
1
⋮
1

 

𝑥11

 𝑥21

⋯
⋯

𝑥1𝑑

𝑥2𝑑

⋮ ⋱ ⋮
 𝑥𝑛1 ⋯ 𝑥𝑛𝑑

 

𝜃0

𝜃1

⋮
𝜃𝑑

֜
 

ො𝐲 = 𝐗𝜽
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Input features
(one sample has 𝑑 

features)

Model 
parameters

Prediction

Linear Prediction

41

ො𝐲 = 𝐗𝜽

(𝑑 weights and 1 bias)

 

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛

 =

1
1
⋮
1

 

𝑥11

 𝑥21

⋯
⋯

𝑥1𝑑

𝑥2𝑑

⋮ ⋱ ⋮
 𝑥𝑛1 ⋯ 𝑥𝑛𝑑

 

𝜃0

𝜃1

⋮
𝜃𝑑
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Temperature 
of the building

Linear Prediction

42

 
ො𝑦1

ො𝑦2
 =  

1 25
1 − 10

 
50
50

 
2
0

 
50
10

 ⋅

 0.2
0.64

0
1

0.14

MODEL
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ො𝑦1

ො𝑦2
 =  

1 25
1 − 10

 
50
50

 
2
0

 
50
10

 ⋅

 0.2
0.64

0
1

0.14

Temperature 
of the building

MODEL

Linear Prediction

43

How do we 
obtain the 

model?
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How to Obtain the Model?

44

Data points

Model parameters

Labels (ground truth)

Estimation

Loss 
function

Optimization
𝐗

𝜃 ො𝑦

𝑦
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How to Obtain the Model?

• Loss function: measures how good my estimation is 
(how good my model is) and tells the optimization 
method how to make it better.

• Optimization: changes the model in order to improve 
the loss function (i.e., to improve my estimation).

45
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Prediction: 
Temperature 

of the building

Linear Regression: Loss Function

46
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Linear Regression: Loss Function

47

Prediction: 
Temperature 

of the building
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Minimizing
Objective function

Energy
Cost function

Linear Regression: Loss Function

48

𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2
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Optimization: Linear Least Squares
• Linear least squares: an approach to fit a linear model 

to the data

• Convex problem, there exists a closed-form solution 
that is unique.

49

min
𝜃

 𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 
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Optimization: Linear Least Squares

50

The estimation comes 
from the linear model

𝑛 training samples

=
1

𝑛
෍

𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2min

𝜽
 𝐽 𝜽 =

1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 
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Optimization: Linear Least Squares

51

min
𝜽

 𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛
෍

𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

 𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚) 

𝑛 training samples, 
each input vector has 

size 𝑑 

𝑛 labels

Matrix notation
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Optimization: Linear Least Squares

52

min
𝜽

 𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛
෍

𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

 𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚) Matrix notation

More on matrix notation in the next exercise session
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Optimization: Linear Least Squares

53

min
𝜽

 𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛
෍

𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

 𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚) 

53

Convex

Optimum

𝜕𝐽(𝜽)

𝜕𝜽
= 0
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True output: 
Temperature of 

the building

Inputs: Outside 
temperature, 

number of people, 
…

Optimization

54

We have found 
an analytical 
solution to a 

convex problem

Details in the 
exercise 
session!𝜕𝐽(𝜃)

𝜕𝜃
= 2𝐗𝑇𝐗𝜽 − 2𝐗𝑇𝐲 = 0

𝜃 = 𝐗𝑇𝐗 −1𝐗𝑇𝐲
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Is this the best Estimate?
• Least squares estimate 

55

𝐽 𝜽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2
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Maximum Likelihood

56
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Maximum Likelihood Estimate

57

Controlled by parameter(s)

Parametric family of distributions

𝑝𝑑𝑎𝑡𝑎(𝐲|𝐗)

𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)

True underlying distribution
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Maximum Likelihood Estimate
• A method of estimating the parameters of a statistical 

model given observations, 

58

Observations from  𝑝𝑑𝑎𝑡𝑎(𝐲|𝐗)

𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)
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Maximum Likelihood Estimate
• A method of estimating the parameters of a statistical 

model given observations, by finding the parameter 
values that maximize the likelihood of making the 
observations given the parameters.

59

𝜽𝑴𝑳 = arg max
𝜽

 𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)
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Maximum Likelihood Estimate
• MLE assumes that the training samples are 

independent and generated by the same probability 
distribution

60

𝑝𝑚𝑜𝑑𝑒𝑙 𝐲 𝐗, 𝜽 = ෑ

𝑖=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

“i.i.d.” assumption
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Maximum Likelihood Estimate

61

𝜽𝑴𝑳 = arg max
𝜽

 ෑ

𝑖=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

 

𝜽𝑴𝑳 = arg max
𝜽

 ෍

𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽) 

Logarithmic property log 𝑎𝑏 = log 𝑎 + log 𝑏
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𝜽𝑴𝑳 = arg max
𝜽

 ෍

𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽) 

Back to Linear Regression

62

What shape does our 
probability distribution 

have?
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What shape does our probability 
distribution have?

𝑝(𝑦𝑖|𝐱𝑖 , 𝜽)

Back to Linear Regression

63
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Assuming

Gaussian / Normal 
distribution𝑝(𝑦𝑖|𝐱𝑖 , 𝜽)

𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎2 = 𝐱𝑖𝜽 + 𝒩(0, 𝜎2)

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2  
𝑒

−
1

2𝜎2 𝑦𝑖−𝜇 2

𝑦𝑖  ~ 𝒩(𝜇, 𝜎2)

Back to Linear Regression

64
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Assuming

𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = ?

𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎2 = 𝐱𝑖𝜽 + 𝒩(0, 𝜎2)

𝑝 𝑦𝑖 =
1

2𝜋𝜎2  
𝑒

−
1

2𝜎2 𝑦𝑖−𝜇 2

𝑦𝑖  ~ 𝒩(𝜇, 𝜎2)

Back to Linear Regression

65

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2  
𝑒

−
1

2𝜎2 𝑦𝑖−𝜇 2

𝑦𝑖  ~ 𝒩(𝜇, 𝜎2)
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𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = 2𝜋𝜎2 −1/2𝑒
−

1
2𝜎2 𝑦𝑖−𝐱𝒊𝜽 2

Assuming 𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎2 = 𝐱𝑖𝜽 + 𝒩(0, 𝜎2)

𝑝 𝑦𝑖 =
1

2𝜋𝜎2  
𝑒

−
1

2𝜎2 𝑦𝑖−𝜇 2

𝑦𝑖  ~ 𝒩(𝜇, 𝜎2)

Back to Linear Regression

66

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2  
𝑒

−
1

2𝜎2 𝑦𝑖−𝜇 2

𝑦𝑖  ~ 𝒩(𝜇, 𝜎2)
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Back to Linear Regression

67

𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = 2𝜋𝜎2 −1/2𝑒
−

1
2𝜎2 𝑦𝑖−𝐱𝒊𝜽 2

Original 
optimization 
problem

𝜽𝑴𝑳 = arg max
𝜽

 ෍

𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽) 
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Back to Linear Regression

68

෍

𝑖=1

𝑛

log 2𝜋𝜎2 −
1
2 𝑒

−
1

2𝜎2 𝑦𝑖−𝒙𝒊𝜽 2

Matrix notation

Canceling log and 𝑒

−
𝑛

2
log 2𝜋𝜎2  −

1

2𝜎2
𝒚 − 𝑿𝜽 𝑇 𝒚 − 𝑿𝜽

෍

𝑖=1

𝑛

−
1

2
log 2𝜋𝜎2 + ෍

𝑖=1

𝑛

−
1

2𝜎2
𝑦𝑖 − 𝒙𝒊𝜽

2
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𝜃𝑀𝐿 = arg max
𝜃

 ෍

𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽) 

Back to Linear Regression

69

How can we find 
the estimate of 
theta?

Details in the 
exercise session!

−
𝑛

2
log 2𝜋𝜎2  −

1

2𝜎2
𝐲 − 𝐗𝜽 𝑇 𝐲 − 𝐗𝜽

𝜕𝐽(𝜽)

𝜕𝜽
= 0

𝜽 = 𝑿𝑇𝑿 −1𝑿𝑇𝐲
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Linear Regression
• Maximum Likelihood Estimate (MLE) corresponds to 

the Least Squares Estimate (given the assumptions)

• Introduced the concepts of loss function and 
optimization to obtain the best model for regression

70
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Image Classification

71
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Regression vs Classification

• Regression: predict a continuous output value (e.g., 
temperature of a room)

• Classification: predict a discrete value 
– Binary classification: output is either 0 or 1
– Multi-class classification: set of N classes 

72
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Logistic Regression

73

CAT classifier
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Sigmoid for Binary Predictions

74

Can be interpreted 
as a probability

1

0

𝑥0

𝑥1

𝑥2

𝜃1

𝜃0

𝜃2

Σ

𝜎 𝑥 =
1

1 + 𝑒−𝑥

ො𝑦𝑖 = 𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)
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Spoiler Alert: 1-Layer Neural Network

75

1

0

𝑥0

𝑥1

𝑥2

𝜃1

𝜃0

𝜃2

Σ

𝜎 𝑥 =
1

1 + 𝑒−𝑥

ො𝑦𝑖 = 𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)

Can be interpreted 
as a probability
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Logistic Regression: Max. Likelihood
• Probability of a binary output 

• Maximum Likelihood Estimate

76

𝑝 y 𝐗, 𝜽 = ො𝐲 = ෑ

𝑖=1

𝑛

ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)

𝜽𝑴𝑳 = arg max
𝜽

 log  𝑝 y 𝐗, 𝜽  

ො𝑦𝑖 = 𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)
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Logistic Regression: Loss Function

77

𝑝 y 𝐗, 𝜽 = ො𝐲 = ෑ

𝑖=1

𝑛

ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)

log 𝑝 y 𝐗, 𝜽 =  ෍

𝑖=1

𝑛

log ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)

= ෍

𝑖=1

𝑛

𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)



Introduction to Deep LearningDaniel Cremers

Logistic Regression: Loss Function

• Related to the multi-class loss you will see in this 
course (also called softmax loss)
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Referred to as binary cross-entropy loss (BCE)

ℒ ො𝑦𝑖 , 𝑦𝑖 = −[𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)]
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𝐶 𝜃 = −
1

𝑛
෍

𝑖=1

𝑛

ℒ ො𝑦𝑖 , 𝑦𝑖

          

 = −
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

Logistic Regression: Optimization
• Loss for each training sample:

• Overall loss
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Minimization

ℒ ො𝑦𝑖 , 𝑦𝑖 = −[𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)]

ො𝑦𝑖 = 𝜎(𝐱𝑖𝜽)
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Logistic Regression: Optimization
• No closed-form solution

• Make use of an iterative method → gradient descent

80

Gradient descent – 
later on!
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Insights from the first lecture
• We can learn from experience
 -> Intelligence, certain ability to infer the future!

• Even linear models are often pretty good for 
complex phenomena: e.g., weather:
– Linear combination of day-time, day-year etc. is often 

pretty good

81
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Next Lectures

• Next exercise session: Math Recap II

• Next Lecture: Lecture 3:
– Jumping towards our first Neural Networks and 

Computational Graphs
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References for further Reading
• Cross validation:

– https://medium.com/@zstern/k-fold-cross-validation-
explained-5aeba90ebb3

– https://towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b61beca4b6

• General Machine Learning book:
– Pattern Recognition and Machine Learning. C. Bishop.
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https://medium.com/@zstern/k-fold-cross-validation-explained-5aeba90ebb3
https://medium.com/@zstern/k-fold-cross-validation-explained-5aeba90ebb3
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
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