
Introduction to Deep LearningDaniel Cremers

Introduction to
Neural Networks

1

Introduction to Deep LearningDaniel Cremers

From Linear and
Logitistic Regression
to Neural Networks

2

Introduction to Deep LearningDaniel Cremers

Linear Regression

3

= a supervised learning method to find a linear model of

the form

Goal: find a model that
explains a target y given
the input x

ො𝑦𝑖 = 𝜃0 + ෍

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗 = 𝜃0 + 𝑥𝑖1𝜃1 + 𝑥𝑖2𝜃2 + ⋯ + 𝑥𝑖𝑑𝜃𝑑

𝜃0

Introduction to Deep LearningDaniel Cremers

Logistic Regression
• Loss per training sample

• Overall loss

4

Minimization

𝒞 𝜽 = −
1

𝑛
෍

𝑖=1

𝑛

(𝑦𝑖 ∙ log ෝ𝑦𝑖 + (1 − 𝑦𝑖) ∙ log[1 − ෝ𝑦𝑖])

ෝ𝑦𝑖 = 𝜎(𝑥𝑖𝜽)

ℒ ො𝑦𝑖 , 𝑦𝑖 = −[𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)]

Introduction to Deep LearningDaniel Cremers

Linear vs Logistic Regression

5

y=1

y=0

Predictions are guaranteed
to be within [0;1]

Predictions can exceed the range
of the training samples
 → in the case of classification
[0;1] this becomes a real issue

Introduction to Deep LearningDaniel Cremers

How to obtain the Model?

6

Data points

Model parameters

Labels (ground truth)

Estimation

Loss
function

Optimization

𝜽 ෝ𝒚

𝒚𝒙

Introduction to Deep LearningDaniel Cremers

Linear Score Functions
• Linear score function as seen in linear regression

𝒇𝒊 = ෍

𝒋

𝑤𝒊,𝒋 𝑥𝒋

𝒇 = 𝑾 𝒙

7

(Matrix Notation)

Introduction to Deep LearningDaniel Cremers

Linear Score Functions on Images
• Linear score function 𝒇 = 𝑾𝒙

8

On CIFAR-10

On ImageNet Source:: Li/Karpathy/Johnson

Introduction to Deep LearningDaniel Cremers

Linear Score Functions?

9

Logistic Regression Linear Separation Impossible!

Introduction to Deep LearningDaniel Cremers

Linear Score Functions?
• Can we make linear regression better?

– Naïve idea: Multiply with another weight matrix 𝑾𝟐

෠𝒇 = 𝑾𝟐 ⋅ 𝑾𝟏 ⋅ 𝒙

• Operation remains linear:
 W = 𝑾𝟐 ⋅ 𝑾𝟏

෠𝒇 = W 𝒙

• Solution → add non-linearity!!

10

Introduction to Deep LearningDaniel Cremers

Neural Network
• Linear score function 𝒇 = 𝑾𝒙

• Neural network is a nesting of ‘functions’
– 2-layers: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

– 3-layers: 𝒇 = 𝑾𝟑 max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))

– 4-layers: 𝒇 = 𝑾𝟒 tanh (𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)))

– 5-layers: 𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))))

– … up to hundreds of layers

11

Introduction to Deep LearningDaniel Cremers

Introduction to
Neural Networks

12

Introduction to Deep LearningDaniel Cremers

History of Neural Networks

13
Source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html

Introduction to Deep LearningDaniel Cremers

Neural Network

14

Logistic Regression Neural Networks

Introduction to Deep LearningDaniel Cremers

Neural Network
• Non-linear score function 𝒇 = … (max(𝟎, 𝑾𝟏𝒙))

15

On CIFAR-10

Visualizing activations of the first layer. Source: ConvNetJS

Introduction to Deep LearningDaniel Cremers

Neural Network

16

1-layer network: 𝒇 = 𝑾𝒙

𝒙
𝑾

128 × 128 = 16384

𝒇

10

Why is this structure useful?

2-layer network: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

𝒙
𝒉𝑾𝟏

128 × 128 = 16384 1000

𝒇𝑾2

10

Introduction to Deep LearningDaniel Cremers

Neural Network

17

2-layer network: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

𝒙
𝒉𝑾𝟏

128 × 128 = 16384 1000

𝒇𝑾2

10

Input Layer Hidden Layer Output Layer

Introduction to Deep LearningDaniel Cremers

Net of Artificial Neurons

18

𝑓(𝑊0,0𝑥 + 𝑏0,0)

𝑥1

𝑥2

𝑥3

𝑓(𝑊0,1𝑥 + 𝑏0,1)

𝑓(𝑊0,2𝑥 + 𝑏0,2)

𝑓(𝑊0,3𝑥 + 𝑏0,3)

𝑓(𝑊1,0𝑥 + 𝑏1,0)

𝑓(𝑊1,1𝑥 + 𝑏1,1)

𝑓(𝑊1,2𝑥 + 𝑏1,2)

𝑓(𝑊2,0𝑥 + 𝑏2,0)

Introduction to Deep LearningDaniel Cremers

Neural Network

19

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Introduction to Deep LearningDaniel Cremers

Activation Functions

20

Sigmoid: 𝜎 𝑥 =
1

(1+𝑒−𝑥)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥

Maxout max 𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2

ELU f x = ቊ
𝑥 if 𝑥 > 0

α e𝑥 − 1 if 𝑥 ≤ 0

Parametric ReLU: max 𝛼𝑥, 𝑥

Introduction to Deep LearningDaniel Cremers

Neural Network

21

𝒇 = 𝑾𝟑 ⋅ (𝑾𝟐 ⋅ 𝑾𝟏 ⋅ 𝒙))

Why activation functions?

Simply concatenating linear
layers would be so much

cheaper...

Introduction to Deep LearningDaniel Cremers

Neural Network

22

Why organize a neural network into layers?

Introduction to Deep LearningDaniel Cremers

Biological Neurons

23

Credit: Stanford CS 231n

Introduction to Deep LearningDaniel Cremers

Biological Neurons

24

Credit: Stanford CS 231n

Introduction to Deep LearningDaniel Cremers

Artificial Neural Networks vs Brain

25

Artificial neural networks are inspired by the brain,
but not even close in terms of complexity!

The comparison is great for the media and news articles though... ☺

Introduction to Deep LearningDaniel Cremers

Artificial Neural Network

26

𝑓(𝑊0,0𝑥 + 𝑏0,0)

𝑥1

𝑥2

𝑥3

𝑓(𝑊0,1𝑥 + 𝑏0,1)

𝑓(𝑊0,2𝑥 + 𝑏0,2)

𝑓(𝑊0,3𝑥 + 𝑏0,3)

𝑓(𝑊1,0𝑥 + 𝑏1,0)

𝑓(𝑊1,1𝑥 + 𝑏1,1)

𝑓(𝑊1,2𝑥 + 𝑏1,2)

𝑓(𝑊2,0𝑥 + 𝑏2,0)

Introduction to Deep LearningDaniel Cremers

Neural Network
• Summary

– Given a dataset with ground truth training pairs [𝑥𝑖; 𝑦𝑖],

– Find optimal weights and biases 𝑾 using stochastic
gradient descent, such that the loss function is minimized
• Compute gradients with backpropagation (use batch-mode;

more later)
• Iterate many times over training set (SGD; more later)

27

Introduction to Deep LearningDaniel Cremers

Computational
Graphs

28

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• Directional graph

• Matrix operations are represented as compute
nodes.

• Vertex nodes are variables or operators like +, -, *, /,
log(), exp() …

• Directional edges show flow of inputs to vertices

29

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

30

mult

sum 𝑓 𝑥, 𝑦, 𝑧

Introduction to Deep LearningDaniel Cremers

Evaluation: Forward Pass

31

Initialization 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

sum

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• Why discuss compute graphs?

• Neural networks have complicated architectures
𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))))

• Lot of matrix operations!

• Represent NN as computational graphs!

32

Introduction to Deep LearningDaniel Cremers

Computational Graphs
A neural network can be represented as a
computational graph...

– it has compute nodes (operations)

– it has edges that connect nodes (data flow)

– it is directional

– it can be organized into ‘layers’

33

Introduction to Deep LearningDaniel Cremers

Computational Graphs

34

𝑥1

𝑥2

𝑥3

+１

𝑧1
(2)

𝑧2
(2)

𝑧3
(2)

𝑧1
(3)

𝑧2
(3)

𝑤11
(2)

𝑤12
(2)

𝑤13
(2)

𝑤21
(2)

𝑤22
(2)

𝑤23
(2)

𝑤31
(2)

𝑏1
(2)

𝑏2
(2)

𝑏3
(2)

𝑤33
(2)

𝑤11
(3)

𝑤12
(3)

𝑤21
(3)

𝑤22
(3)

𝑤31
(3)

𝑤32
(3)

𝑏1
(3)

𝑏2
(3)

𝑤32
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑓

𝑓

𝑓

+１

Introduction to Deep LearningDaniel Cremers

Computational Graphs

35

• From a set of neurons to a Structured Compute Pipeline

[Szegedy et al.,CVPR’15] Going Deeper with Convolutions

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• The computation of Neural Network has further

meanings:
– The multiplication of 𝑾 and 𝒙: encode input information
– The activation function: select the key features

36
Source; https://www.zybuluo.com/liuhui0803/note/981434

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• The computations of Neural Networks have further

meanings:
– The convolutional layers: extract useful features with

shared weights

37

Source: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

Introduction to Deep LearningDaniel Cremers

Computational Graphs
• The computations of Neural Networks have further

meanings:
– The convolutional layers: extract useful features with

shared weights

38

Source: https://www.zybuluo.com/liuhui0803/note/981434

Introduction to Deep LearningDaniel Cremers

Loss Functions

39

Introduction to Deep LearningDaniel Cremers

What’s Next?

40

Are these reasonably close?

Inputs Neural Network Outputs Targets

We need a way to describe how close the network's
outputs (= predictions) are to the targets!

Introduction to Deep LearningDaniel Cremers

What’s Next?
Idea: calculate a ‘distance’ between prediction and target!

41

prediction

target

large distance! prediction

target
small distance!

bad prediction good prediction

Introduction to Deep LearningDaniel Cremers

Loss Functions
• A function to measure the goodness of the

predictions (or equivalently, the network's
performance)

Intuitively, ...
– a large loss indicates bad predictions/performance

(→ performance needs to be improved by training the
model)

– the choice of the loss function depends on the concrete
problem or the distribution of the target variable

42

Introduction to Deep LearningDaniel Cremers

Regression Loss
• L1 Loss:

𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
෍

𝑖

𝑛

| 𝑦𝑖 − ෝ𝑦𝑖| 1

• MSE Loss:

𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
෍

𝑖

𝑛

| 𝑦𝑖 − ෝ𝑦𝑖| 2
2

43

Introduction to Deep LearningDaniel Cremers

Binary Cross Entropy
• Loss function for binary (yes/no) classification

44

Yes! (0.8)

No! (0.2)

The network predicts
the probability of the input
belonging to the "yes" class!

𝐿 𝒚, ෝ𝒚; 𝜽 = −
1

𝑛
෍

𝑖

𝑛

[𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)]

Introduction to Deep LearningDaniel Cremers

Cross Entropy
Generalizes to multi-class classification:

45

dog (0.1)

rabbit (0.2)

duck (0.7)

…

𝐿 𝒚, ෝ𝒚; 𝜽 = − ෍

𝑖=1

𝑛

෍

𝑘=1

𝑘

(𝑦𝑖𝑘 ∙ log ො𝑦𝑖𝑘)

𝑦𝑖𝑘 = ቊ
1 𝑖𝑓 𝑥𝑖 ∈ 𝑐𝑙𝑎𝑠𝑠 𝑘
0 𝑒𝑙𝑠𝑒

Introduction to Deep LearningDaniel Cremers

More General Case
• Ground truth: 𝒚
• Prediction: ෝ𝒚
• Loss function: 𝐿 𝒚, ෝ𝒚

• Motivation:
– minimize the loss <=> find better predictions

– predictions are generated by the NN

– find better predictions <=> find better NN

46

Introduction to Deep LearningDaniel Cremers

Initially

47

Prediction

Targets

Bad prediction!

Loss

Training time
t1

Introduction to Deep LearningDaniel Cremers

During Training…

48

Prediction

Targets

Bad prediction!

Loss

Training time
t2

Introduction to Deep LearningDaniel Cremers

During Training…

49

Prediction

Targets

Bad prediction!

Loss

Training time
t3

Introduction to Deep LearningDaniel Cremers

Training Curve

50
Training time

Loss

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?

51

Parameters 𝜽

Loss
𝐿(𝒚, 𝑓𝜽 𝒙)

𝜽

Plotting loss curves against model
parameters

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?

• Loss function: 𝐿 𝒚, ෝ𝒚 = 𝐿(𝒚, 𝑓𝜽 𝒙)

• Neural Network: 𝑓𝜽(𝒙)

• Goal:
– minimize the loss w. r. t. 𝜽

52

Optimization! We train compute graphs
with some optimization techniques!

Introduction to Deep LearningDaniel Cremers

Gradient Descent
Minimize loss 𝐿 𝒚, 𝑓𝜽 𝒙 w.r.t. 𝜽:

53

𝜽

𝐿(𝒚, 𝑓𝜽 𝒙)

𝜽𝒕

𝛁𝜽𝐿(𝒚, 𝑓𝜽 𝒙)

𝜽𝒕+𝟏 = 𝜽𝒕 − 𝛼 𝛁𝜽𝐿 𝒚, 𝑓𝜽 𝒙 ቚ
𝜽𝒕

t → ∞

𝜽∗ = arg min 𝐿 𝒚, 𝑓𝜽 𝒙

step size / learning rate

𝜽𝒕+𝟏 𝜽∗

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

𝒇𝜽 𝒙 = 𝑾𝒙 , 𝜽 = 𝑾

 Later 𝜽 = {𝑾, 𝒃}

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑦𝑖 − ෝ𝑦𝑖| 2
2

54

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑦𝑖 − 𝑾 ⋅ 𝑥𝑖| 2
2

55

𝑥

*

Multiply𝑊

𝑦

𝐿

Gradient flow

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

𝑓𝜃 𝒙 = 𝑾𝒙, 𝜽 = 𝑾

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑾 ⋅ 𝑥𝑖 − 𝑦𝑖| 2
2

• 𝛻𝜃𝐿 𝒚, 𝑓𝜃(𝒙) =
2

𝑛
σ𝑖

𝑛 𝑾 ⋅ 𝑥𝑖 − 𝑦𝑖 ⋅ 𝑥𝑖
𝑇

56

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given a multi-layer NN with many activations
𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))))

• Gradient descent for 𝐿 𝒚, 𝑓𝜽 𝒙 w. r. t. 𝜽
– Need to propagate gradients from end to first layer (𝑾𝟏).

57

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given multi-layer NN with many activations

58

𝑥

*

Multiply𝑊1

𝑊2

max(𝟎,)

*

Multiply

𝑦

𝐿

Gradient flow

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given multilayer layer NN with many activations

𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))))

• Gradient descent solution for 𝐿 𝒚, 𝑓𝜽 𝒙 w. r. t. 𝜽
– Need to propagate gradients from end to first layer (𝑾𝟏)

• Backpropagation: Use chain rule to compute
gradients
– Compute graphs come in handy!

59

Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?
• Why gradient descent?

– Easy to compute using compute graphs

• Other methods include
– Newtons method
– L-BFGS
– Adaptive moments
– Conjugate gradient

60

Introduction to Deep LearningDaniel Cremers

Summary
• Neural Networks are computational graphs
• Goal: for a given train set, find optimal weights

• Optimization is done using gradient-based solvers
– Many options (more in the next lectures)

• Gradients are computed via backpropagation
– Nice because can easily modularize complex functions

61

Introduction to Deep LearningDaniel Cremers

Next Lectures

• Next Lecture:
– Backpropagation and optimization of Neural Networks

• Check for updates on website/piazza regarding
exercises

62

	Slide 1: Introduction to Neural Networks
	Slide 2: From Linear and Logitistic Regression to Neural Networks
	Slide 3: Linear Regression
	Slide 4: Logistic Regression
	Slide 5: Linear vs Logistic Regression
	Slide 6: How to obtain the Model?
	Slide 7: Linear Score Functions
	Slide 8: Linear Score Functions on Images
	Slide 9: Linear Score Functions?
	Slide 10: Linear Score Functions?
	Slide 11: Neural Network
	Slide 12: Introduction to Neural Networks
	Slide 13: History of Neural Networks
	Slide 14: Neural Network
	Slide 15: Neural Network
	Slide 16: Neural Network
	Slide 17: Neural Network
	Slide 18: Net of Artificial Neurons
	Slide 19: Neural Network
	Slide 20: Activation Functions
	Slide 21: Neural Network
	Slide 22: Neural Network
	Slide 23: Biological Neurons
	Slide 24: Biological Neurons
	Slide 25: Artificial Neural Networks vs Brain
	Slide 26: Artificial Neural Network
	Slide 27: Neural Network
	Slide 28: Computational Graphs
	Slide 29: Computational Graphs
	Slide 30: Computational Graphs
	Slide 31: Evaluation: Forward Pass
	Slide 32: Computational Graphs
	Slide 33: Computational Graphs
	Slide 34: Computational Graphs
	Slide 35: Computational Graphs
	Slide 36: Computational Graphs
	Slide 37: Computational Graphs
	Slide 38: Computational Graphs
	Slide 39: Loss Functions
	Slide 40: What’s Next?
	Slide 41: What’s Next?
	Slide 42: Loss Functions
	Slide 43: Regression Loss
	Slide 44: Binary Cross Entropy
	Slide 45: Cross Entropy
	Slide 46: More General Case
	Slide 47: Initially
	Slide 48: During Training…
	Slide 49: During Training…
	Slide 50: Training Curve
	Slide 51: How to Find a Better NN?
	Slide 52: How to Find a Better NN?
	Slide 53: Gradient Descent
	Slide 54: How to Find a Better NN?
	Slide 55: How to Find a Better NN?
	Slide 56: How to Find a Better NN?
	Slide 57: How to Find a Better NN?
	Slide 58: How to Find a Better NN?
	Slide 59: How to Find a Better NN?
	Slide 60: How to Find a Better NN?
	Slide 61: Summary
	Slide 62: Next Lectures

