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Linear Regression

- a supervised learning method to find a linear model of

the form
d
yi = 90 + le}e} = 90 + xi191 + Xizez + - xl-dBd
j=1
A
Yy )
o \ Goal: find a model that
0 explains a target y given
/0_ A the input x
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[ ogistic Regression
« [LOss per training sample

LB, yi) = —lyilogy; + (1 — y;) log(1 — ¥;)]

e Overall loss

n
1
C(8) = =~ > (i - logFi}+ (1—yy) - log[1 — 7,])
/ i=1
Minimization yi = 0(x;0)
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Linear vs Logistic Regression

o0 000 V ©

0o 000 \/-|

> X

Predictions can exceed the range
of the training samples

- In the case of classification
[0:1] this becomes a real Issue

> X

Predictions are guaranteed
to be within [01]
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How to obtain the Model?

Data points Labels (ground truth)
X y
Optimization
> LOss
function
Model parameters Estimation

9 Y
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LInear Score Functions

« Linear score function as seen in linear regression

fi= 2,

f = Wx (Matrix Notation)
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Linear Score Functions on Images

. Lmearscore funchonf Wx

__OnCIFAR-10

On Imagel\let Source: Li/Karpathy/Johnson
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Linear Score Functions?

| ogistic Regression Linear Separation Impossiblel
A A
A
A
A
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Linear Score Functions?

« Can we make linear regression better?
— Naive idea: Multiply with another weight matrix W,
f=wW, W, x
« Operation remains linear:
w=w, W,
f=Wwx
« Solution — add non-linearity!!

Daniel Cremers Introduction to Deep Learning
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Neural Network

e Linear score function f = Wx

« Neural network is a nesting of ‘functions
— 2-layers f = W, max(0, W x)
— 3-layers f = W5 max(0, W, max(0, Wx))
— 4-layers. f = W, tanh (W5, max(0, W, max(0, Wx)))
— 5-layers f = Weo(W 4 tanh(W;, max(0, W, max(0, W;x))))
— .. Up to hundreds of layers

Daniel Cremers Introduction to Deep Learning 11



INntroduction to
Neural Networks
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History of Neural Networks

Deep Neural Network

(Pretraining)
Multi-layered m A
A

XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)

Electronic Brain

1960 1970 1980

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff

XAND Y XORY NOT X Foward Activity > | o $ - 5 K e
+1 0+ 2 +174] - -1 \ 000 - 7
x/ v \” x/ ,I, \” )I( «@—— Backward Error
« Adjustable Weights « Learnable Weights and Threshold « XOR Problem « Solution to nonlinearly separable problems  « Limitations of learning prior knowledge * Hierarchical feature Learning
= Weights are not Learned * Big computation, local optima and overfitting + Kernel function: Human Intervention

Source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1html
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Neural Network

L ogistic Regression Neural Networks

A

A
=
@
® 9o o
@
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Neural Network

« Non-linear score functionf= . (max(0, Wx))

Pl

Iﬂg filick

On CIFAR-10

Ty
L bR e |
— RN
b Dy

Visualizing activations of the first layer. Source: ConvNetJs
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Neural Network

1-layer network f = Wx 2-layer network: f = W, max(0, W1x)

128 X 128 = 16384 10 128 X 128 = 16384 1000

[\X/hy S this structure useful? ]

10
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Neural Network

2-layer network: f = W, max(0, W1x)

output layer

hidden layer 128 X 128 = 16384 1000 10

input layer

INnput Layer Hidden Layer — Output Layer
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Net of Artificial Neurons
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Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

\ 7/ WS “‘ / NX > T
) / NN, A2/,
- 2 ’-’//“\.\3:\\‘) “.'a.'//,“\\k\t\." 7
K ORNNRSH A R
WA '\\- ‘E‘) v :" "4' : // ) ‘$ :"‘ ?'"'- s //
5T — ‘\‘3;9’\-’.;"2'{2.4“\:}“"1‘-'x}.t T
PLAHTTN /;“{\“.'\“:i\"g’ﬁf:}',;éi”é

' SRR

Source: https.//towardsdatascience.com/training-deep-neural-networks-9fdb19640b964
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Activation Functions

Sigmoid: a(x) = (1+2_x) /

7-
2

_T/

1o} /

tanh: tanh(x)

RelLU: max(0, x)

Leaky RelLU: max(0.1x, x)

=10 =8

Parametric ReLU: max(ax, x)
Maxout max(w! x + by, wlx + by)

x ifx>0

ELUf(x) = {a(ex —1) ifx<0

Daniel Cremers - -2 Introddction tdDeep Learning
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Neural Network

f=Ws3-(Wy  (Wq-x)))

-

\_

Why activation functions?

Simply concatenating linear
layers would be so much
cheaper..

~

J

Introduction to Deep Learning
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Neural Network

[\X/hy organize a neural network into Layers?]

. hidden layer 1 hidden layer 2  hidden layer 3
input layer
£y

output layer

Introduction to Deep Learning
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Biological Neurons

impulses carried
toward cell body

branches
dendrites of axon
\ va axon
nucleus i “/L\ terminals
» ol
7~ \ \ impulses carried NS

away from cell body
cell body

Credit: Stanford CS 231n
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Biological Neurons

impulses carried
toward cell body

branches
of axon

axon
terminals Z( wo

>® synapse
axon from a neuron .
~WoIo

impulses carried
away from cell body

cell body

i (Zwiwi + b)
Zwimi +b l

output axon

activation
function

Credit: Stanford CS 231n
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Artificial Neural Networks vs Brain

Artificial neural networks are inspired by the brain,
but not even close in terms of complexity!
The comparison is great for the media and news articles though... ©

Daniel Cremers Introduction to Deep Learning



Artificial Neural Network
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Neural Network

e Summary
— Glven a dataset with ground truth training pairs [x;; y;1.

— Find optimal welights and biases W using stochastic
gradient descent, such that the loss function is minimized

« Compute gradients with backpropagation (use batch-mode;

more later)
 [terate many times over training set (SGD; more later)

Daniel Cremers Introduction to Deep Learning
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TUTi

Computational
Graphs
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Computational Graphs

» Directional graph

« Matrix operations are represented as compute
nodes,

« Vertex nodes are variables or operators like + -, 7, /,
log(), expl) ..

« Directional edges show flow of inputs to vertices
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Computational Graphs

* f(x,y,z) = (X+:)/)'Z

f(x,y,2)

Introduction to Deep Learning 30



* f(x,y,z) = (X+y)'Z

—valuation: Forward Pass

Initializationx =1,y = =3,z =4

Daniel Cremers Introduction to Deep Learning
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Computational Graphs

Wy discuss compute graphs?

Neural networks have complicated architectures
f=W:co(W,tanh(W;, max(0, W, max(0,Wx))))

Lot of matrix operations!

« Represent NN as computational graphs!

Daniel Cremers Introduction to Deep Learning



Computational Graphs

A neural network can be represented as a
computational grapn..

— It has compute nodes (operations)

— It has edges that connect nodes (data flow)
— It is directional

— It can be organized into 'layers

Daniel Cremers Introduction to Deep Learning



Computational Graphs

(2) (2) (2)
z, = = %:x;.»«.r’”‘f + bk
(2) (2)
) = @)

3 (2) (3) (3)
z, —Zi:ai w +bk
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Computational Graphs

« From a set of neurons to a Structured Compute Pipeline
(]

Convolution
AvgPool
MaxPool
Concat

@ Dropout

@8 Fully connected

@ Softmax

[Szegedy et al,CVPR'15] Going Deeper with Convolutions

Daniel Cremers Introduction to Deep Learning 35



Computational Graphs

« The computation of Neural Network has further
meanings:
— The multiplication of W and x: encode input information
— The activation function: select the key features

RELU RELU RELU RELU RELU RELU
CONVl

¢

car
truck

aifplane

Bhip

Jhorse

source; https.//www.zybuluo.com/liuhuio803/note/981434
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Computational Graphs

« The computations of Neural Networks have further
meanings:

— The convolutional layers: extract useful features with
shared weights

Source: https.//medium.com/@timothy _terati/image-convolution-filtering-as4dce7c786b
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Computational Graphs

« The computations of Neural Networks have further
meanings:
— The convolutional layers: extract useful features with

shared weights
Low-Level| |Mid-Level| [High-Level Trainable
s — —
Feature Feature _-I Feature Classifier
:( . : ’ BT = )

source: https.//www zybuluo.com/liuhuio803/note/981434
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| 0SS Functions
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What's Next?

| Inputs |—> Neural Network —bl Outputs |~ Targets
\

i
Are these reasonably close?

J

We need a way to describe how close the network's
outputs (= predictions) are to the targets!

Daniel Cremers Introduction to Deep Learning
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A

/
/
/
/

/

/
¢ target

What's Next?

ldea: calculate a ‘distance’ between prediction and target!

#¢ Prediction
/

», large distancel

bad prediction

Daniel Cremers

Introduction to Deep Learning

A

prediction

A small distance!
¢ target

>

good prediction
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L oss Functions

« A function to measure the goodness of the
predictions (or equivalently, the network's
oerformance)

Intuitively, ..

— a large loss indicates bad predictions/performance
(— performance needs to be improved by training the
model)

— the choice of the loss function depends on the concrete
problem or the distribution of the target variable

Daniel Cremers Introduction to Deep Learning



Regression Loss

e | 1L0ss
1 n
L3 8) =+ ) Iy =il
i
e MSE LOSsS!

n
o] X
L3 ) == ) Iy = 5ill3
i
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Binary Cross

-Ntropy

« [oss function for binary (yes/no) classification

n

. 1 . .
L(y,y; 0) = —52[% logy; + (1 —y;) log(1 — ;)]

Daniel Cremers

belonging to the "yes' class!

| The network predicts
\ the probability of the input
No!

Introduction to Deep Learning
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Cross Entropy

1 if x; €classk

Generalizes to multi-class classification:
Yike = {O else

n kK /
L(y.3; 0) = ‘Z 008300

dog (0.1
rabbit (0.2)

duck (0.7)
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More General Case

Ground truth: y

« Prediction: y

« [Loss function: L(y,y)
Motivation:

— minimize the loss <=> find better predictions
— predictions are generated by the NN
— find better predictions <=> find better NN

Daniel Cremers Introduction to Deep Learning
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/
/
/
/

/
v Targets

Bad prediction!

Daniel Cremers

Initially

2® Prediction
7/

I

Introduction to Deep Learning
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During Training..

¢ Prediction

/
/
/
/
/

/
¢ Targets

Bad prediction!

Daniel Cremers

0SS
A

I T

Introduction to Deep Learning

>
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During Training..

0SS
A A

8 Prediction ﬁ
///

¢

I

|

/
¢ Targets

Bad prediction!

Daniel Cremers Introduction to Deep Learning
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Training Curve

0SS

>
Training time
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| OSS

L(y, fo(x))

Daniel Cremers

How to Find a Better NN?

Plotting loss curves against model
parameters

—>

Parameters 6
Introduction to Deep Learning
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How to Find a

Better NN7?

« Loss function: L(y,y) = L(y, fe(x))

* Neural Network: fg(x)
e Goal
— minimize the lossw.r.t 0

ﬁ Optimization! We train compute graphs
with some optimization technigues!

Daniel Cremers Introduction to Deep Learning



Gradient Descent

Minimize loss L(y, fa(x)) w.rt. 6:
L(J’;fe (x))

VoL(y,)fo(x))

step size / learning rate

0.1 = 0, ~(AWL(y, fo(®)

RZ‘—)OO

6* = argmin L(y, f5(x))

0,

>

0, 0,11 07 o
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How to Find a Better NN?

« Glven inputs x and targets y

« Given one layer NN with no activation function
fo(x) =Wx, =W

Later 8 = {W, b}

« Given MSE Loss: L(y,9;0) = %Z? lly; — 7115

Daniel Cremers Introduction to Deep Learning



How to Find a Better NN?

« Glven inputs x and targets y
« Given one layer NN with no activation function

+ Given MSE Loss L(y,3;0) = ~SF [ly; =W - x;|13

Gradient flow
Multiply
mtroduc@l_eamng 55
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How to Find a Better NN?

Glven inputs x and targets y

Given one layer NN with no activation function
fo(x) = W, 0=WwW

Given MSE Loss L(y,y: 0) = %Z’{L W - x; — y;|l5

VoL(y, fo(x)) = %Z?(W Xp— Vi) X

Daniel Cremers Introduction to Deep Learning



How to Find a Better NN?

« Glven inputs x and targets y
« Glven a multi-layer NN with many activations
f=Wzo(W,tanh(W3, max(0, W, max(0,Wx))))
» Gradient descent for L(y, fo(x)) w.r. t. @

— Need to propagate gradients from end to first layer (W),

Daniel Cremers Introduction to Deep Learning



How to Find a Better NN?

« Glven inputs x and targets y
« Gliven multi-layer NN with many activations

Grad|ent flow

0/

Daniel Cremers Introduction to Deep Learning 58
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How to Find a Better NN?

« Glven inputs x and targets y

« Gliven multilayer layer NN with many activations
f=Wso(W,tanh(W;, max(0, W, max(0,Wx))))

- Gradient descent solution for L(y, fo(x)) w.r. t. @
— Need to propagate gradients from end to first layer (W)

« Backpropagation: Use chain rule to compute
gradients

— Compute graphs come in handy!

Daniel Cremers Introduction to Deep Learning



How to Find a Better NN?

« \Why gradient descent?
— Easy to compute using compute grapns

« Other methods include
— Newtons method
— L-BFGS
— Adaptive moments
— Conjugate gradient

Daniel Cremers Introduction to Deep Learning

00



Summary

Neural Networks are computational graphs
Goal: for a given train set, find optimal weights

Optimization is done using gradient-based solvers
— Many options (more in the next lectures)

Gradients are computed via backpropagation
— Nice because can easily modularize complex functions
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Next Lectures

* Next Lecture:
— Backpropagation and optimization of Neural Networks

« Check for updates on website/piazza regarding
exercises

Daniel Cremers Introduction to Deep Learning
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