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From Linear and 
Logitistic Regression 
to Neural Networks
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Linear Regression

3

= a supervised learning method to find a linear model of 

the form

Goal: find a model that 
explains a target y given 
the input x

ො𝑦𝑖 = 𝜃0 + ෍

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗 = 𝜃0 + 𝑥𝑖1𝜃1 + 𝑥𝑖2𝜃2 +  ⋯ + 𝑥𝑖𝑑𝜃𝑑

𝜃0
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Logistic Regression
• Loss per training sample

• Overall loss

4

Minimization

𝒞 𝜽 = −
1

𝑛
෍

𝑖=1

𝑛

(𝑦𝑖 ∙ log ෝ𝑦𝑖 + (1 − 𝑦𝑖) ∙ log[1 − ෝ𝑦𝑖])

ෝ𝑦𝑖 = 𝜎(𝑥𝑖𝜽)

ℒ ො𝑦𝑖 , 𝑦𝑖 = −[𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)]
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Linear vs Logistic Regression
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y=1

y=0

Predictions are guaranteed
to be within [0;1]

Predictions can exceed the range 
of the training samples
 → in the case of classification 
[0;1] this becomes a real issue
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How to obtain the Model?
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Data points

Model parameters

Labels (ground truth)

Estimation

Loss 
function

Optimization

𝜽 ෝ𝒚

𝒚𝒙
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Linear Score Functions
• Linear score function as seen in linear regression

𝒇𝒊 = ෍

𝒋

𝑤𝒊,𝒋 𝑥𝒋

𝒇 = 𝑾 𝒙

7

(Matrix Notation)
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Linear Score Functions on Images
• Linear score function 𝒇 = 𝑾𝒙
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On CIFAR-10

On ImageNet Source:: Li/Karpathy/Johnson
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Linear Score Functions?

9

Logistic Regression Linear Separation Impossible!
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Linear Score Functions?
• Can we make linear regression better?

– Naïve idea: Multiply with another weight matrix 𝑾𝟐

෠𝒇 = 𝑾𝟐 ⋅ 𝑾𝟏 ⋅ 𝒙

• Operation remains linear:
       W = 𝑾𝟐 ⋅ 𝑾𝟏

෠𝒇 = W 𝒙

• Solution → add non-linearity!!

10
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Neural Network
• Linear score function 𝒇 = 𝑾𝒙

• Neural network is a nesting of ‘functions’
– 2-layers: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

– 3-layers: 𝒇 = 𝑾𝟑 max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))

– 4-layers: 𝒇 = 𝑾𝟒 tanh (𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙))) 

– 5-layers: 𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)))) 

– … up to hundreds of layers 

11
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Introduction to 
Neural Networks
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History of Neural Networks

13
Source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html
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Neural Network

14

Logistic Regression Neural Networks
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Neural Network
• Non-linear score function 𝒇 = … (max(𝟎, 𝑾𝟏𝒙))

15

On CIFAR-10

Visualizing activations of the first layer. Source: ConvNetJS



Introduction to Deep LearningDaniel Cremers

Neural Network

16

1-layer network: 𝒇 = 𝑾𝒙

𝒙
𝑾

128 × 128 = 16384

𝒇

10

Why is this structure useful?

2-layer network: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

𝒙
𝒉𝑾𝟏

128 × 128 = 16384 1000

𝒇𝑾2

10
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Neural Network

17

2-layer network: 𝒇 = 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)

𝒙
𝒉𝑾𝟏

128 × 128 = 16384 1000

𝒇𝑾2

10

Input Layer Hidden Layer Output Layer
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Net of Artificial Neurons

18

𝑓(𝑊0,0𝑥 + 𝑏0,0)

𝑥1 

𝑥2 

𝑥3 

𝑓(𝑊0,1𝑥 + 𝑏0,1)

𝑓(𝑊0,2𝑥 + 𝑏0,2)

𝑓(𝑊0,3𝑥 + 𝑏0,3)

𝑓(𝑊1,0𝑥 + 𝑏1,0)

𝑓(𝑊1,1𝑥 + 𝑏1,1)

𝑓(𝑊1,2𝑥 + 𝑏1,2)

𝑓(𝑊2,0𝑥 + 𝑏2,0)
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Neural Network

19

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964
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Activation Functions

20

Sigmoid: 𝜎 𝑥 =
1

(1+𝑒−𝑥)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥

Maxout max 𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2

ELU f x = ቊ
𝑥 if 𝑥 > 0

α e𝑥 − 1  if 𝑥 ≤ 0

Parametric ReLU: max 𝛼𝑥, 𝑥
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Neural Network

21

𝒇 = 𝑾𝟑 ⋅ (𝑾𝟐 ⋅ 𝑾𝟏 ⋅ 𝒙 ))

Why activation functions?

Simply concatenating linear 
layers would be so much 

cheaper...
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Neural Network

22

Why organize a neural network into layers?
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Biological Neurons

23

Credit: Stanford CS 231n
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Biological Neurons
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Credit: Stanford CS 231n
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Artificial Neural Networks vs Brain

25

Artificial neural networks are inspired by the brain,
but not even close in terms of complexity!

The comparison is great for the media and news articles though... ☺
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Artificial Neural Network

26

𝑓(𝑊0,0𝑥 + 𝑏0,0)

𝑥1 

𝑥2 

𝑥3 

𝑓(𝑊0,1𝑥 + 𝑏0,1)

𝑓(𝑊0,2𝑥 + 𝑏0,2)

𝑓(𝑊0,3𝑥 + 𝑏0,3)

𝑓(𝑊1,0𝑥 + 𝑏1,0)

𝑓(𝑊1,1𝑥 + 𝑏1,1)

𝑓(𝑊1,2𝑥 + 𝑏1,2)

𝑓(𝑊2,0𝑥 + 𝑏2,0)
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Neural Network
• Summary

– Given a dataset with ground truth training pairs [𝑥𝑖; 𝑦𝑖], 

– Find optimal weights and biases 𝑾 using stochastic 
gradient descent, such that the loss function is minimized
• Compute gradients with backpropagation (use batch-mode; 

more later)
• Iterate many times over training set (SGD; more later)

27
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Computational 
Graphs

28
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Computational Graphs
• Directional graph

• Matrix operations are represented as compute 
nodes.

• Vertex nodes are variables or operators like +, -, *, /, 
log(), exp() …

• Directional edges show flow of inputs to vertices

29
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Computational Graphs
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

30

mult

sum 𝑓 𝑥, 𝑦, 𝑧
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Evaluation: Forward Pass

31

Initialization 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

sum

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧
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Computational Graphs
• Why discuss compute graphs?

• Neural networks have complicated architectures
𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)))) 

• Lot of matrix operations!

• Represent NN as computational graphs!

32
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Computational Graphs
A neural network can be represented as a 
computational graph...

– it has compute nodes (operations)

– it has edges that connect nodes (data flow)

– it is directional

– it can be organized into ‘layers’

33
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Computational Graphs

34
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Computational Graphs

35

• From a set of neurons to a Structured Compute Pipeline

[Szegedy et al.,CVPR’15] Going Deeper with Convolutions 
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Computational Graphs
• The computation of Neural Network has further

meanings:
– The multiplication of 𝑾 and 𝒙: encode input information
– The activation function: select the key features

36
Source; https://www.zybuluo.com/liuhui0803/note/981434
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Computational Graphs
• The computations of Neural Networks have further

meanings:
– The convolutional layers: extract useful features with

shared weights

37

Source: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b
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Computational Graphs
• The computations of Neural Networks have further

meanings:
– The convolutional layers: extract useful features with

shared weights

38

Source: https://www.zybuluo.com/liuhui0803/note/981434
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Loss Functions

39
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What’s Next?

40

Are these reasonably close?

Inputs Neural Network Outputs Targets

We need a way to describe how close the network's
outputs (= predictions) are to the targets!
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What’s Next?
Idea: calculate a ‘distance’ between prediction and target!

41

prediction

target

large distance! prediction

target
small distance!

bad prediction good prediction
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Loss Functions
• A function to measure the goodness of the 

predictions (or equivalently, the network's 
performance)

Intuitively, ...
– a large loss indicates bad predictions/performance 

(→ performance needs to be improved by training the 
model)

– the choice of the loss function depends on the concrete 
problem or the distribution of the target variable

42
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Regression Loss
• L1 Loss:

𝐿 𝒚, ෝ𝒚;  𝜽 =
1

𝑛
෍

𝑖

𝑛

| 𝑦𝑖  − ෝ𝑦𝑖| 1

• MSE Loss:

𝐿 𝒚, ෝ𝒚;  𝜽 =
1

𝑛
෍

𝑖

𝑛

| 𝑦𝑖  − ෝ𝑦𝑖| 2
2

43
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Binary Cross Entropy
• Loss function for binary (yes/no) classification

44

Yes! (0.8)

No! (0.2)

The network predicts 
the probability of the input 
belonging to the "yes" class!

𝐿 𝒚, ෝ𝒚;  𝜽 = −
1

𝑛
෍

𝑖

𝑛

[𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)]
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Cross Entropy
Generalizes to multi-class classification:

45

dog (0.1)

rabbit (0.2)

duck (0.7)

…

𝐿 𝒚, ෝ𝒚;  𝜽 = − ෍

𝑖=1

𝑛

෍

𝑘=1

𝑘

(𝑦𝑖𝑘 ∙ log ො𝑦𝑖𝑘)

𝑦𝑖𝑘 = ቊ
1 𝑖𝑓 𝑥𝑖 ∈ 𝑐𝑙𝑎𝑠𝑠 𝑘
0 𝑒𝑙𝑠𝑒
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More General Case
• Ground truth: 𝒚
• Prediction: ෝ𝒚
• Loss function: 𝐿 𝒚, ෝ𝒚

• Motivation: 
– minimize the loss <=> find better predictions

– predictions are generated by the NN

– find better predictions <=> find better NN

46
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Initially

47

Prediction

Targets

Bad prediction!

Loss

Training time
t1
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During Training…

48

Prediction

Targets

Bad prediction!

Loss

Training time
t2
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During Training…

49

Prediction

Targets

Bad prediction!

Loss

Training time
t3
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Training Curve

50
Training time

Loss
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How to Find a Better NN?

51

Parameters 𝜽

Loss 
𝐿(𝒚, 𝑓𝜽 𝒙 )

𝜽

Plotting loss curves against model 
parameters



Introduction to Deep LearningDaniel Cremers

How to Find a Better NN?

• Loss function: 𝐿 𝒚, ෝ𝒚 = 𝐿(𝒚, 𝑓𝜽 𝒙 )

• Neural Network: 𝑓𝜽(𝒙)

• Goal: 
– minimize the loss w. r. t. 𝜽

52

Optimization! We train compute graphs 
with some optimization techniques!
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Gradient Descent
Minimize loss 𝐿 𝒚, 𝑓𝜽 𝒙  w.r.t. 𝜽:

53

𝜽

𝐿(𝒚, 𝑓𝜽 𝒙 )

𝜽𝒕

𝛁𝜽𝐿(𝒚, 𝑓𝜽 𝒙 )

𝜽𝒕+𝟏 = 𝜽𝒕  − 𝛼 𝛁𝜽𝐿 𝒚, 𝑓𝜽 𝒙 ቚ
𝜽𝒕

t → ∞

𝜽∗ = arg min 𝐿 𝒚, 𝑓𝜽 𝒙  

step size / learning rate

𝜽𝒕+𝟏 𝜽∗
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

𝒇𝜽 𝒙 = 𝑾𝒙 , 𝜽 = 𝑾
    
   Later 𝜽 = {𝑾, 𝒃}

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑦𝑖  − ෝ𝑦𝑖| 2
2

54
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑦𝑖  − 𝑾 ⋅ 𝑥𝑖| 2
2

55

𝑥

*

Multiply𝑊

𝑦

𝐿

Gradient flow
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given one layer NN with no activation function

𝑓𝜃 𝒙 = 𝑾𝒙,  𝜽 = 𝑾

• Given MSE Loss: 𝐿 𝒚, ෝ𝒚; 𝜽 =
1

𝑛
σ𝑖

𝑛 | 𝑾 ⋅ 𝑥𝑖 − 𝑦𝑖| 2
2

• 𝛻𝜃𝐿 𝒚, 𝑓𝜃(𝒙) =
2

𝑛
σ𝑖

𝑛 𝑾 ⋅ 𝑥𝑖 − 𝑦𝑖 ⋅ 𝑥𝑖
𝑇

56
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given a multi-layer NN with many activations
𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)))) 

• Gradient descent for 𝐿 𝒚, 𝑓𝜽 𝒙  w. r. t. 𝜽
– Need to propagate gradients from end to first layer (𝑾𝟏).

57
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given multi-layer NN with many activations

58

𝑥

*

Multiply𝑊1

𝑊2

max(𝟎, )

*

Multiply

𝑦

𝐿

Gradient flow
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How to Find a Better NN?
• Given inputs 𝒙 and targets 𝒚
• Given multilayer layer NN with many activations

𝒇 = 𝑾𝟓𝜎(𝑾𝟒 tanh(𝑾𝟑, max(𝟎, 𝑾𝟐 max(𝟎, 𝑾𝟏𝒙)))) 

• Gradient descent solution for 𝐿 𝒚, 𝑓𝜽 𝒙  w. r. t. 𝜽
– Need to propagate gradients from end to first layer (𝑾𝟏)

• Backpropagation: Use chain rule to compute 
gradients
– Compute graphs come in handy!

59
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How to Find a Better NN?
• Why gradient descent?

– Easy to compute using compute graphs

• Other methods include 
– Newtons method
– L-BFGS
– Adaptive moments
– Conjugate gradient

60
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Summary
• Neural Networks are computational graphs
• Goal: for a given train set, find optimal weights

• Optimization is done using gradient-based solvers
– Many options (more in the next lectures)

• Gradients are computed via backpropagation
– Nice because can easily modularize complex functions

61
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Next Lectures

• Next Lecture:
– Backpropagation and optimization of Neural Networks

• Check for updates on website/piazza regarding 
exercises

62
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