

Data Augmentation and Advanced Regularization

Lecture 7 Recap

Daniel Cremers **Introduction to Deep Learning**

Multiclass Classification: Softmax

training pairs $[\pmb{x}_i; y_i]$, $x_i \in \mathbb{R}^D$, $y_i \in \{1, 2 ... C\}$ $y_{\boldsymbol i}$: label (true class)

Parameters:

 $\mathbf{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_C]$

^C: number of classes ^s: score of the class

- 1. Exponential operation: make sure probability>0
- 2. Normalization: make sure probabilities sum up to 1.

Sigmoid Activation

Rectified Linear Units (ReLU)

Daniel Cremers **Introduction to Deep Learning**

Xavier/Kaiming Initialization

• How to ensure the variance of the output is the same as the input?

$$
\underbrace{(nVar(w)Var(x))}_{=1}
$$

$$
Var(w) = \frac{1}{n}
$$

ReLU Kills half of the activations -> adjust var by a factor of 2

$$
Var(w) = \frac{2}{n}
$$

Lecture 8

Data Augmentation

Data Pre-Processing

For images subtract the mean image (AlexNet) or per-channel mean (VGG-Net)

Data Augmentation

• A classifier has to be invariant to a wide variety of transformations

All Images

Videos News Shopping More Settings Tools

 \mathbf{L}

 α

 \bullet

m Sign in

SafeSearch -

Cute

And Kittens

Clipart

White Cats And Kittens

Pose Appearance Illumination

Daniel Cremers and the Community of the Introduction to Deep Learning

Data Augmentation

• A classifier has to be invariant to a wide variety of transformations

• Helping the classifier: synthesize data simulating plausible transformations

Data Augmentation

a. No augmentation $(= 1 \text{ image})$

224x224

b. Flip augmentation $(= 2 \text{ images})$

224x224

c. Crop+Flip augmentation $(= 10 \text{ images})$

224x224

 $+$ flips

Data Augmentation: Brightness

• Random brightness and contrast changes

Data Augmentation: Random Crops

- Training: random crops
	- Pick a random L in [256,480]
	- Resize training image, short side L
	- Randomly sample crops of 224x224

- Testing: fixed set of crops – Resize image at N scales
	- 10 fixed crops of 224x224: (4 corners + 1 center) × 2 flips

Data Augmentation: Advanced

ShearX Magnitude: 17

Original

Magnitude: 28

Original

ShearX

AutoContrast

AutoContrast

AutoContrast

Input image

Sample strength

Sample augmentation and apply it

Algorithm 1 TrivialAugment Procedure

1: **procedure** $TA(x: \text{image})$

- Sample an augmentation α from $\mathcal A$ $2:$
- Sample a strength m from $\{0, \ldots, 30\}$ $3:$
- Return $a(x, m)$ $4:$
- 5: end procedure

Cubuk et al., RandAugment, CVPRW 2020 Muller et al., Trivial Augment, ICCV 2021

Data Augmentation

• When comparing two networks make sure to use the same data augmentation!

• Consider data augmentation a part of your network design

Advanced Regularization

L2 regularization, also (wrongly) called weight decay

• L2 regularization

- Penalizes large weights
- Improves generalization

L2 regularization, also (wrongly) called weight decay

• Weight decay regularization

• Equivalent to L2 regularization in GD, but not in Adam.

Loshchilov and Hutter, Decoupled Weight Decay Regularization, ICLR 2019

Daniel Cremers **Introduction to Deep Learning**

Early Stopping

Bagging and Ensemble Methods

• Train multiple models and average their results

• E.g., use a different algorithm for optimization or change the objective function / loss function.

• If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and Ensemble Methods

• Bagging: uses k different datasets (or SGD/init noise)

Daniel Cremers **Introduction to Deep Learning** Image Source: [Srivastava et al., JMLR'14] Dropout

Dropout

Dropout

• Disable a random set of neurons (typically 50%)

(a) Standard Neural Net

• Using half the network = half capacity

- Using half the network = half capacity
	- Redundant representations
	- Base your scores on more features

• Consider it as a model ensemble

• Two models in one

(b) After applying dropout.

- Using half the network = half capacity
	- Redundant representations
	- Base your scores on more features
- Consider it as two models in one
	- Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: Test Time

• All neurons are "turned on" - no dropout

Conditions at train and test time are not the same

PyTorch: model.train() and model.eval()

Dropout: Test Time Dropout probability $z = (\theta_1 x_1 + \theta_2 x_2) \cdot p$ $p = 0.5$ • Test: $E[z] = \frac{1}{4}(\theta_1 0 + \theta_2 0 + \theta_1 x_1 + \theta_2 0 + \theta_1 0 + \theta_2 x_2$ • Train: \boldsymbol{Z} θ_1 θ_2 $+\theta_1x_1+\theta_2x_2)$ x_2 x_1 $\theta_1 x_1 + \theta_2 x_2$ Weight scaling inference rule

Dropout: Before

- Efficient bagging method with parameter sharing
- Try it!
- Dropout reduces the effective capacity of a model, but needs more training time

• Efficient regularization method, can be used with L2

Dropout: Nowadays

- Usually does not work well when combined with batch-norm.
- Training takes a bit longer, usually 1.5x
- But, can be used for uncertainty estimation.
- Monte Carlo dropout (Yarin Gal and Zoubin Ghahramani series of papers).

Monte Carlo Dropout

- Neural networks are massively overconfident.
- We can use dropout to make the softmax probabilities more calibrated.
- Training: use dropout with a low p (0.1 or 0.2).
- Inference, run the same image multiple times (25-100), and average the results.

Daniel Cremers **Introduction to Deep Learning** Gal et al., Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference, ICLRW 2015 Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016 Gal et al., Deep Bayesian Active Learning with Image Data, ICML 2017 Gal, Uncertainty in Deep Learning, PhD thesis 2017

шш

Batch Normalization: Reducing Internal Covariate Shift

ШШ

Batch Normalization: Reducing Internal Covariate Shift

What is internal covariate shift, by the way?

Our Goal

• All we want is that our activations do not die out

Daniel Cremers **Introduction to Deep Learning**

- Wish: Unit Gaussian activations (in our example)
- Solution: let's do it

Mean of your mini-batch examples over feature k $\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$

[Ioffe and Szegedy, PMLR'15] Batch Normalization

• In each dimension of the features, you have a unit gaussian (in our example)

Daniel Cremers **Introduction to Deep Learning**

• In each dimension of the features, you have a unit gaussian (in our example)

• For NN in general, BN normalizes the mean and variance of the inputs to your activation functions

BN Layer

• A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions

[Ioffe and Szegedy, PMLR'15] Batch Normalization

• 1. Normalize

$$
\widehat{\mathbf{x}}^{(k)} = \frac{\mathbf{x}^{(k)} - E\big[\mathbf{x}^{(k)}\big]}{\sqrt{Var\big[\mathbf{x}^{(k)}\big]}}
$$
 Differentiable function so we can backup through it...

• 2. Allow the network to change the range

$$
\mathbf{y}^{(k)} = (\mathbf{y}^{(k)}\widehat{\mathbf{x}}^{(k)} + (\mathbf{\beta}^{(k)})
$$
 These parameters will be optimized during backprop

[Ioffe and Szegedy, PMLR'15] Batch Normalization

Daniel Cremers **Introduction to Deep Learning**

• 1. Normalize

$$
\widehat{\mathbf{x}}^{(k)} = \frac{\mathbf{x}^{(k)} - E[\mathbf{x}^{(k)}]}{\sqrt{Var[\mathbf{x}^{(k)}]}}
$$

• 2. Allow the network to change the range

$$
\mathbf{y}^{(k)} = \underbrace{\gamma^{(k)} \widehat{\mathbf{x}}^{(k)} + \beta^{(k)}}_{\text{backprop}}
$$

The network *can* learn to undo the normalization

$$
\gamma^{(k)} = \sqrt{Var[\mathbf{x}^{(k)}]}
$$

$$
\beta^{(k)} = E[\mathbf{x}^{(k)}]
$$

[Ioffe and Szegedy, PMLR'15] Batch Normalization

• Ok to treat dimensions separately? Shown empirically that even if features are not correlated, convergence is still faster with this method

BN: Train vs Test

• Train time: mean and variance is taken over the minibatch

$$
\widehat{\mathbf{x}}^{(k)} = \frac{\mathbf{x}^{(k)} - \mathbf{E}[\mathbf{x}^{(k)}]}{\sqrt{Var[\mathbf{x}^{(k)}]}}
$$

- Test-time: what happens if we can just process one image at a time?
	- No chance to compute a meaningful mean and variance

[Ioffe and Szegedy, PMLR'15] Batch Normalization

BN: Train vs Test

Training: Compute mean and variance from mini-batch 1,2,3 …

Testing: Compute mean and variance by running an exponentially weighted averaged across training minibatches. Use them as σ_{test}^2 and μ_{test} .

> $Var_{running} = \beta_m * Var_{running} + (1 - \beta_m) * Var_{minibatch}$ $\mu_{running} = \beta_m * \mu_{running} + (1 - \beta_m) * \mu_{minibatch}$ β_m : momentum (hyperparameter)

> > [Ioffe and Szegedy, PMLR'15] Batch Normalization

Daniel Cremers **Introduction to Deep Learning**

BN: What do you get?

• Very deep nets are much easier to train, more stable gradients

• A much larger range of hyperparameters works similarly when using BN

BN: A Milestone

Daniel Cremers **Introduction to Deep Learning**

BN: Drawbacks

[Wu and He, ECCV'18] Group Normalization

Daniel Cremers **Introduction to Deep Learning**

Other Normalizations

[Wu and He, ECCV'18] Group Normalization

Daniel Cremers **Introduction to Deep Learning**

Other Normalizations

Image size

Number of channels

[Wu and He, ECCV'18] Group Normalization

What We Know

Depth

Concept of a 'Neuron'

Activation Functions (non-linearities)

Backpropagation

SGD Variations (Momentum, etc.)

Data Augmentation

a. No augmentation $(= 1 \text{ image})$

b. Flip augmentation $(= 2 \text{ images})$

Weight Regularization e.g., L^2 -reg: $R^2(W) = \sum_{i=1}^{N} w_i^2$ Batch-Norm

$$
\widehat{\mathbf{x}}^{(k)} = \frac{\mathbf{x}^{(k)} - E[\mathbf{x}^{(k)}]}{\sqrt{Var[\mathbf{x}^{(k)}]}}
$$

Dropout

(b) After applying dropout.

Daniel Cremers **Introduction to Deep Learning**

Why not simply more layers?

- Neural nets with at least one hidden layer are universal function approximators.
- But generalization is another issue.
- Why not just go deeper and get better?
	- No structure!!
	- It is just brute force!
	- Optimization becomes hard
	- Performance plateaus / drops!
- We need more! More means CNNs, RNNs and eventually Transformers.

See you next week!

References

- Goodfellow et al. "Deep Learning" (2016), – Chapter 6: Deep Feedforward Networks
- Bishop "Pattern Recognition and Machine Learning" (2006), – Chapter 5.5: Regularization in Network Nets
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/neural-networks-3/