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Binary Classification: Sigmoid

o(x,0) =

1+ e~ 28

Can be
interpreted as

Daniel Cremers

a probability
p(y =1|x,0)

@)
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Multiclass Classification: Softmax

EXP training pairs [x;; yil.
e Softmax x; ERP, y, €{1,2..C}
- ) oSYi y; label (true class)
] x', @ — = ——
Z; }; bltt f ZICC‘=1 eSk ZJ](é:l exiek Parameters:
ropanility O | ®=1[0,0,..0
the true class normalize 61,02 ]

C: number of classes
s:. score of the class

1. Exponential operation: make sure probability>0
2. Normalization: make sure probabilities sum up to 1
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Sigmoid Activation

1
1+ e—S

a(s) =

1.0

% ds 0L 081
557 5w s
Saturated neurons Kill

the gradient flow
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Rectified Linear Units (Rel_U)

X Dead Rel U
. Large and
What happens if a | consistent
RelLU outputs zero? gradients /
./ ~ast convergence / Does not saturate

[Krizhevsky et al. NeurlPS 2012] ImageNet Classification with Deep Convolutional Neural Networks
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Xavier/Kaiming Initialization

« How to ensure the variance of the output Is the same
as the input?

ReLU Kills half of the activations
‘(nvar (W)'VG,T‘ (.’X.')) -> adjust var by a factor of 2

4
Var(w) = —

Y
=1
Var(w) = }J
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Data Pre-Processing

original data zero-centered data normalized data
4
o - 0 - U I
-~
¥
et = 13 4T = 0 5 1 e > 0 s

For images subtract the mean image (AlexNet) or per-channel mean (VGG-Net)
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Data Augmentation

« A classifier has to be invariant to a wide variety of
transformations

Daniel Cremers Introduction to Deep Learning
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Data Augmentation

« A classifier has to be invariant to a wide variety of
transformations

« Helping the classifier: synthesize data simulating
olausible transformations
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Data Aug mentation

a. No augmentation

b. Flip augmentation (= :

224x224

-
c. Crop+Flip augmentation

+ flips

Daniel Cremers [Krizhevsky et al, NIPS'12] ImageNet 14



Data Augmentation: Brighthess

« Random brightness and contrast changes

Daniel Cremers Introduction to Deep Learning  [Krizhevsky et al, NIPS12] ImageNet 15



Data Augmentation: Random Crops

« Training. random crops
— Pick arandom L in [256,480]
— Resize training image, short side L
— Randomly sample crops of 224x224

« Testing: fixed set of crops
— Resize image at N scales
— 10 fixed crops of 224x224: (4 corners + 1 center ) x 2 flips

Daniel Cremers Introduction to Deep Learning  [Krizhevsky et al, NIPS12] ImageNet 16



Data Augmentation: Advanced

Magnitude: 9

Original ShearX

Magnitude: 17

ShearX AutoContrast

Magnitude: 28

AutoContrast

Original ShearX

Cubuk et al,, RandAugment, CVPRW 2020
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f-?.,— &=

Input image

>

il

N\ :|l | Sample strength
- o

Sample augmentation
and apply it

Algorithm 1 TrivialAugment Procedure
1: procedure TA(z: image)

2: Sample an augmentation a from A
3:  Sample a strength m from {0, ...,30}
4: Return a(x, m)

5: end procedure

Muller et al,, Trivial Augment, ICCV 2021
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Data Augmentation

« \When comparing two networks make sure to use the
same data augmentation!

« Consider data augmentation a part of your network
design
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|2 regularization, also (wrongly) called weight
decay

« 2 regularization

@k—|—1 — @k — EV@f @k) )\@k

N\

L earning rate Gradient  Gradient of L2-regularization

« Penalizes large weights
* Improves generalization
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2 regularization, also (wrongly) called weight
decay

« Weight decay regularization

Opi1 = (1 — N)Ok — aVe f(Or)

L earning rate of weight Learning rate of the
decay optimizer

« Equivalent to L2 regularization in GD, but not in Adam.

Loshchilov and Hutter, Decoupled Weight Decay
Regularization, ICLR 2019
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—arly Stopping

Learning curves

£ —¢ Training set loss
bl
E 0.15 — Validation set loss[
g »
o 0.10 Overfitting
-
I
Ry S
i 0.05
8
= 0.00
0 a0 100 150 200 250

Time (epochs)
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B3agging and Ensemble Methods

« Train multiple models and average thelr results

« Eg., use adifferent algorithm for optimization or
change the objective function / loss function

« |ferrors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size

Daniel Cremers Introduction to Deep Learning
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Bagging: uses k different datasets (or SGD/Init noise

Training Set 2 Training Set 3

Training Set 1

Image Source: [Srivastava et al, JMLR'14] Dropout
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Dropout
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Dropout

vV 50%)

i

typica

Disable a random set of neurons (
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(b) After applying dropout.

(a) Standard Neural Net

[Srivastava et al, JMLR14] Dropout

Introduction to Deep Learning
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Dropout: Intuition

« Using half the network = half capacity ——
eaunaan

representations

Furry \@\

Has two 7,
eyes /‘G/ v
Has a tall / g
Has paws /9/

Has two ears

(b) After applying dropout.

Daniel Cremers introduction to Deep Learning  [Srivastava et al, JMLR14] Dropout 27



Dropout: Intuition

« Using half the network = half capacity
— Redundant representations
— Base your scores on more features

o Consider it as a model ensemble

Daniel Cremers Introduction to Deep Learning  [Srivastava et al, JMLR'14] Dropout 23



Dropout: Intuition

e WO Mmodels in one

(b) After applying dropout.

Daniel Cremers introduction to Deep Learning  [Srivastava et al, JMLR14] Dropout g



Dropout: Intuition

« Using half the network = half capacity
— Redundant representations
— Base your scores on more features

o Consider it as two models in one

— Training a large ensemble of models, each on different
set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Daniel Cremers Introduction to Deep Learning  [Srivastava et al, JMLR'14] Dropout



Dropout: Test Time

« All neurons are "turned on’ - no dropout

Conditions at train and test
time are not the same

g

1)
(-
\ o,o & ,vo 2

PyTorch: modeltrain() and model.eval()

woww)vo\\

R\ ~\~

Ob bﬁ. ‘,OP bﬁ.
o X 40“ lbi
AR R
AVAN

31
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e [ost

e Train

Daniel Cremers

Dropout: Test Time

Weight scaling
inference rule

z=(01x1+6,x3)p

Dropout
probability
p=20.5

introduction to Deep Learning  [Srivastava et al, JMLR14] Dropout 42




Dropout: Before

« Efficient bagging method with parameter sharing
o Tryit

« Dropout reduces the effective capacity of a model,
out needs more training time

« Efficient regularization method, can be used with L2

Daniel Cremers Introduction to Deep Learning  [Srivastava et al, JMLR'14] Dropout



Dropout: Nowadays

« Usually does not work well when combined with
patch-norm.

« Training takes a bit longer, usually 1.5x

« But, can be used for uncertainty estimation.

« Monte Carlo dropout (Yarin Gal and Zoubin
Ghahramani series of papers).

Daniel Cremers Introduction to Deep Learning



Monte Carlo Dropout

« Neural networks are massively overconfident

« \We can use dropout to make the softmax
orobabilities more calibrated.

« Traning: use dropout with a low p (0.1 0r 0.2).

« [nference, run the same image multiple times (25-
100), and average the results.

Gal et al, Bayesian Convolutional Neural Networks with Bernoulli
Approximate Variational Inference, ICLRW 2015

Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016
Gal et al,, Deep Bayesian Active LLearning with Image Data, ICML 2017

Gal, Uncertainty in Deep Learning, PhD thesis 2017
Daniel Cremers Introduction to Deep Learning



TUTi

Batch Normalization:

Reducing Internal Covariate
Shift
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TUTi

Batch Normalization:

Reducing Internal Covariate
Shift

What is internal covariate shift, by the way?

Daniel Cremers Introduction to Deep Learning 37



o All we want Is that our activations do not die out

Daniel Cremers

Our Goal

Introduction to Deep Learning
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Batch Normalization

« Wish: Unit Gaussian activations (in our example)
« Solution: lets do it

D - num of features Mean of your mini-batch
8111 [ examples over feature k
o))
o %) (fé
E 200 — X\ — E[x ]
i JVar[x(]
<

-

I
i !

feature1 . featurek.

[loffe and Szegedy, PMLLR15] Batch Normalization
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Batch Normalization

« |n each dimension of the features, you have a unit
gaussian (in our example)

D = num of features Mean of your mini-batch

1

N = mini-batch size

L 2 /

examples over feature k

/

(k) xU — E[x(k)]
X\ =

/ JVar[x(]

Unit Gaussian

feature1 .

Daniel Cremers

feature k..
[loffe and Szegedy, PMLR'15] Batch Normalization
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Batch Normalization

« |n each dimension of the features, you have a unit
gaussian (in our example)

« For NN in general, BN normalizes the mean and
variance of the inputs to your activation functions

[loffe and Szegedy, PMLR'15] Batch Normalization
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SN Layer

« A layer to be applied after Fully :

Connected (or Convolutional layers and BN

before non-linear activation functions 1

tanh

l

FC

'

BN

:

tanh

l

lloffe and Szegedy, PMLR'15] Batch Normalization
Daniel Cremers Introduction to Deep Learning



Batch Normalization

e 1 Normalize

(k) _ (k)
x E[x ] - Differentiable function so we
\/Var[x(k)] can backprop through it..

2K —

« 2. Allow the network to change the range

(k) — ~(K) +— [hese parameters will be
Yoo = x optimized during backprop

[loffe and Szegedy, PMLR'15] Batch Normalization
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Batch Normalization

e 1 Normalize

The network can
x() — E[x(k)] learn to undo the

’f(k) = normalization
JVar[x®)]

y) = JVar[x(k)]
« 2 Allow the network to change the

range B = E[x®]

y =@’x‘(") @

backprop

lloffe and Szegedy, PMLR'15] Batch Normalization
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Batch Normalization

« Okto treat dimensions separately?
Shown empirically that even if features are not

correlated, convergence is still faster with this
method

[loffe and Szegedy, PMLR'15] Batch Normalization
Daniel Cremers Introduction to Deep Learning



BN Train vs Test

* Train time: mean and variance Is taken over the mini-
patch

« Test-time: what happens If we can just process one
image at a time?

— No chance to compute a meaningful mean and variance

[loffe and Szegedy, PMLR'15] Batch Normalization
Daniel Cremers Introduction to Deep Learning



BN Train vs Test

Training: Compute mean and variance from mini-batch
12,3 .

Testing: Compute mean and variance by running an

exponentially welghted averaged across training mini-
patches. Use them as o2s and peese .

Varrunning - ﬁm * Varrunning + (1 - Bm) * Varminibatch
Hrunning = Em * Urunning + (1 - ﬁm) * Uminibatch
Bm. Momentum (hyperparameter)

[loffe and Szegedy, PMLR'15] Batch Normalization
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BN: What do you get?

« Very deep nets are much easier to train, more stable
gradients

« A much larger range of hyperparameters works
similarly when using BN

[loffe and Szegedy, PMLR'15] Batch Normalization
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BN: A Milestone

PR

-A&sze'r
40- ngr‘FeaT PY w/o0 BN
e w/BN
35=
= Inception
5 30- g
O @
T VGG ]
 25- .BN-IncepTion
ResNet
®
20 = ® ResNeXt gENet
iIncep'rion—ResNe‘r. .. Amoeba
| 1 [] ] [] NASNGT.
2013 2014 2015 2016 2017 2018

Year
[Wu and He, ECCV'18] Group Normalization
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BN: Drawbacks

val error

36 |
—+Batch Norm
32+
28
24 |
32 16 8 4 2

batch size

[Wu and He, ECCV'18] Group Normalization
Introduction to Deep Learning
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Other Normalizations

36 val error
—+Batch Norm
-o-Group Norm
32
28
242 o o -6 —o
32 16 8 4 2
batch size
[Wu and He, ECCV'18] Group Normalization
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Other Normalizations

Image size

Batch Norm

Number of elements in the batch

Number of channels

[Wu and He, ECCV'18] Group Normalization

Introduction to Deep Learning
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What We Know
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Width

Daniel Cremers

What do we know so far?

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

S
e

e

057 ol TS S
e i 5-:.:&;_-5’.

s
o T
ﬁ:ﬂaf;}h S
iy
i ?g"h‘
- #‘

v

Depth
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What do we know so far?

Concept of a Neuron

Introduction to Deep Learning
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What do we know so far?

Activation Functions (non-linearities)

1
(1+e%) =

« Sigmoid:o(x) =

f * RelU:max(0,x)

« TanH:tanh(x)

Daniel Cremers

Introduction to Deep Learning

+ Leaky Rel.U:max(0.1x, x) .
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What do we know so far?

Backpropagation

Wa  2:00

1.00 /" —1.0C /" 037 < > 1.37 < ) 0.73
020 “_/—020 “__/ 053 —0.53 1.00

0.20
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What do we know so far?

SGD Variations (Momentum, etc)

58



What do we know so far?

Data Augmentation Batch-Norm
k k
a. No augmentation Q(k) _ x( ) —_ E[x( )]
/s JVar[x®)]

Dropout

Weight Initialization

(e.g., Kaiming)
Weight Regularization
eg.L*-reg. R*(W) =X, w}

Daniel Cremers Introduction to Deep Learning 59




Why not simply more layers?

Neural nets with at least one hidden layer are universal function
approximators,

But generalization is another issue.

Why not just go deeper and get better?
— No structurel!
— Itisjust brute force!
— Optimization becomes hard
— Performance plateaus / drops!

We need morel More means CNNs, RNNs and eventually Transformers,

Daniel Cremers Introduction to Deep Learning
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TUTi

See you next week!
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