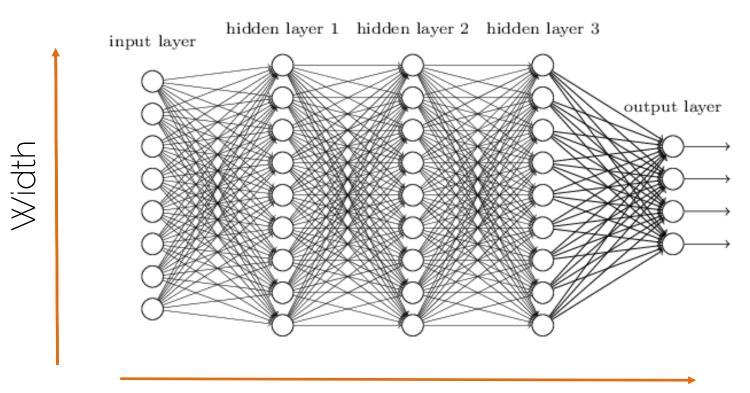


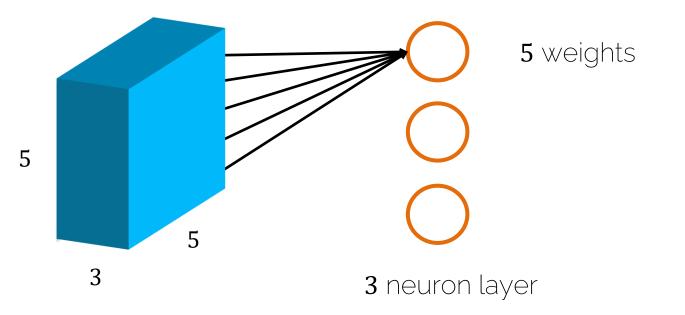
Convolutional Neural Networks

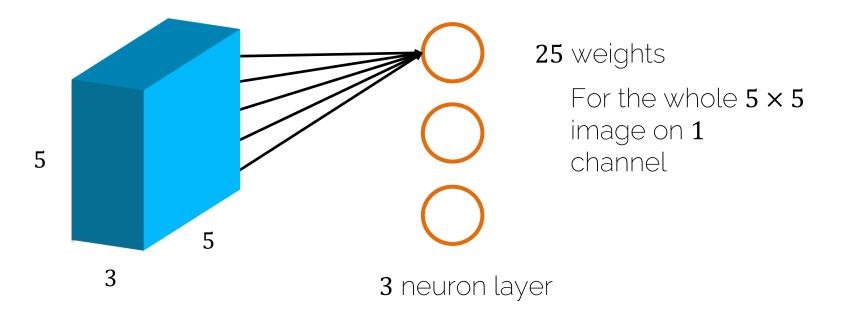
Introduction to Deep Learning

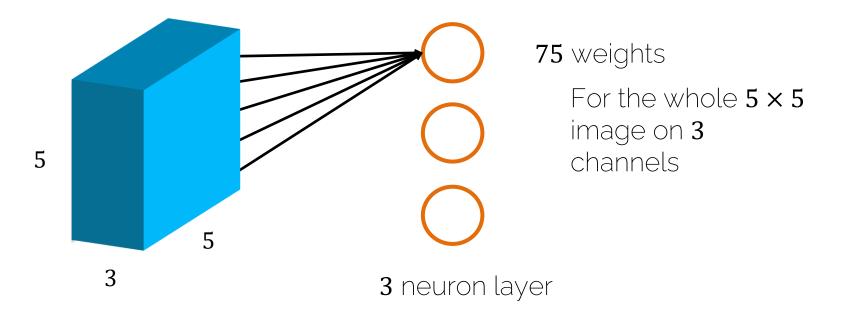
Fully Connected Neural Network

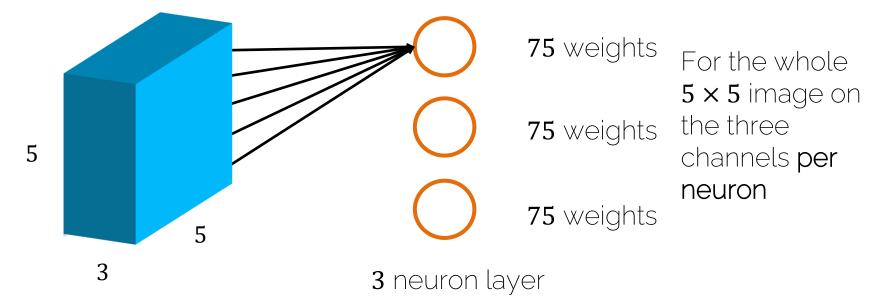


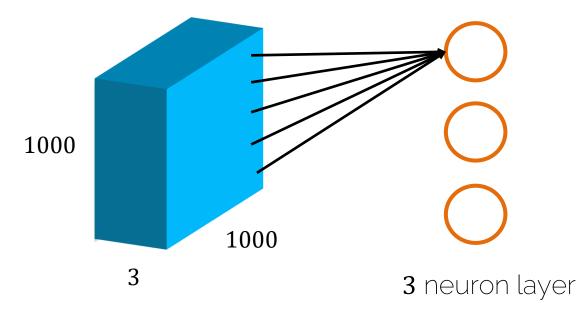
Depth Introduction to Deep Learning

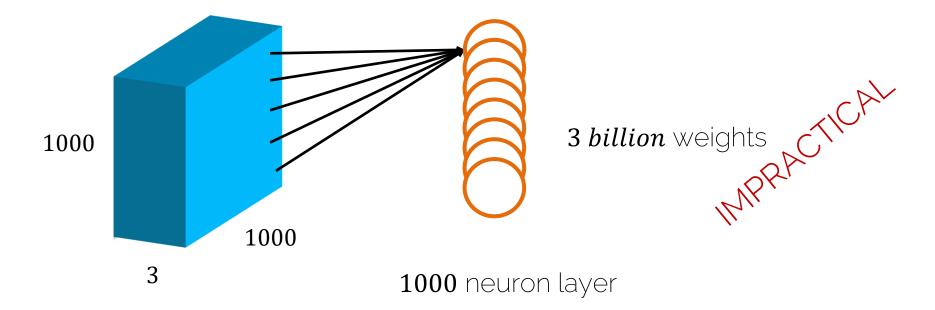












Why not simply more FC Layers?

We cannot make networks arbitrarily complex

- Why not just go deeper and get better?
 - No structure!!
 - It is just brute force!
 - Optimization becomes hard
 - Performance plateaus / drops!

Better Way than FC?

- We want to restrict the degrees of freedom
 - We want a layer with structure
 - Weight sharing → using the same weights for different parts of the image

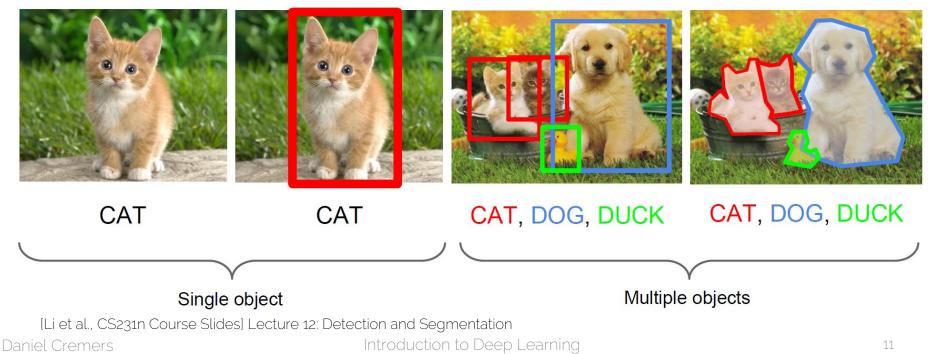
Using CNNs in Computer Vision

Classification

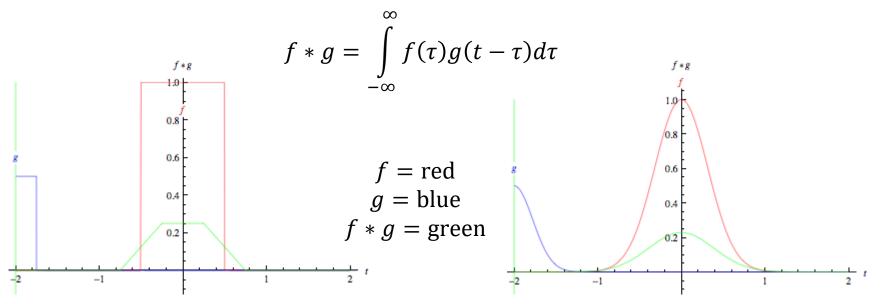
Classification + Localization

Object Detection

Instance Segmentation



Convolutions



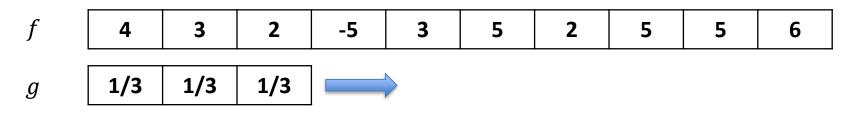
Convolution of two box functions

Convolution of two Gaussians

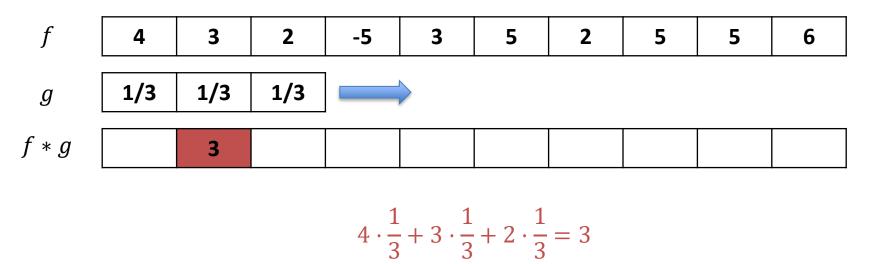
Application of a filter to a function — The 'smaller' one is typically called the filter kernel

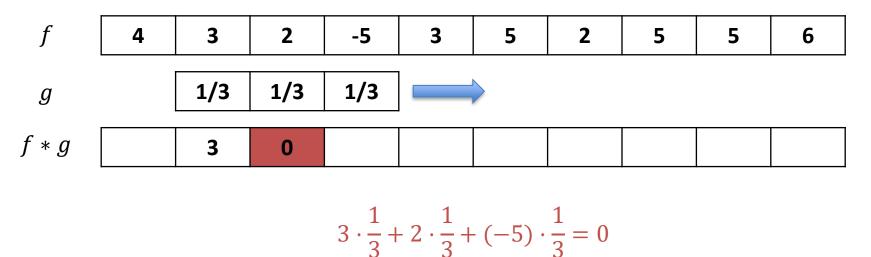
Introduction to Deep Learning

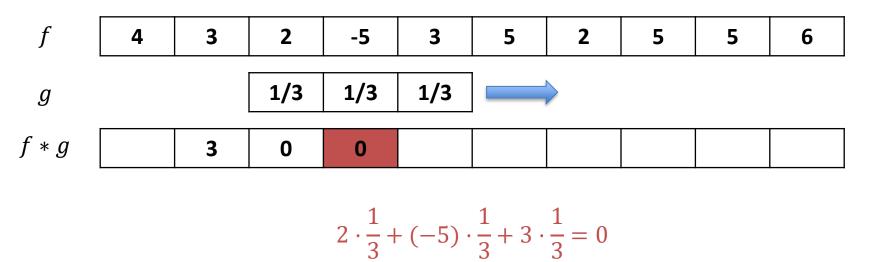
Discrete case: box filter

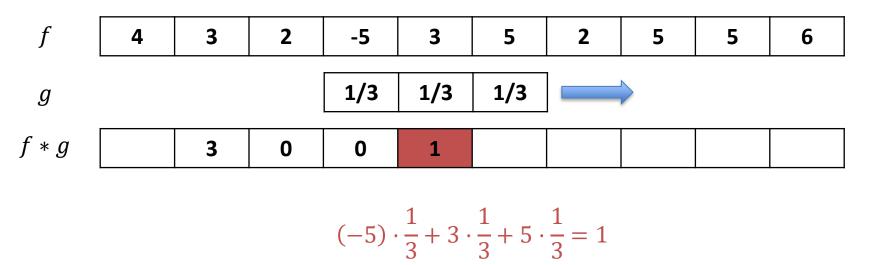


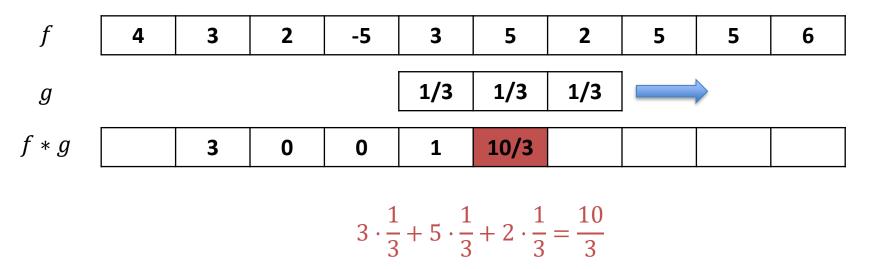
'Slide' **filter kernel** from left to right; at each position, compute a single value in the output data



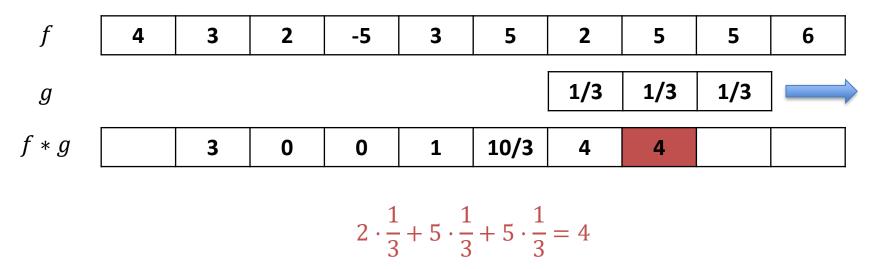


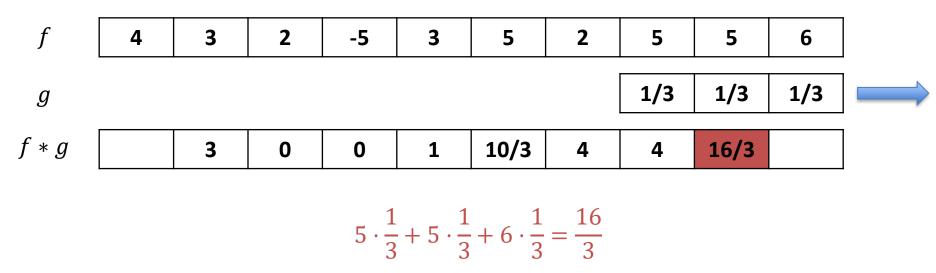




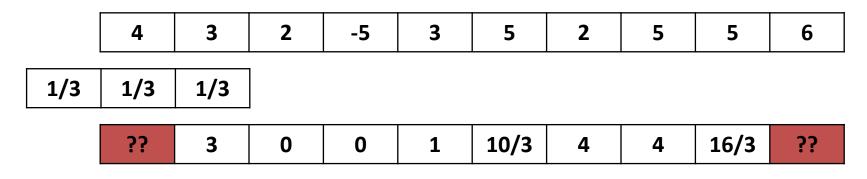






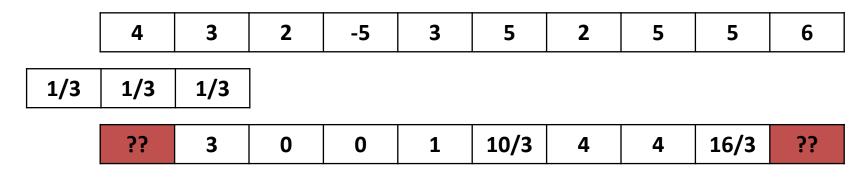


Discrete case: box filter



What to do at boundaries?

Discrete case: box filter

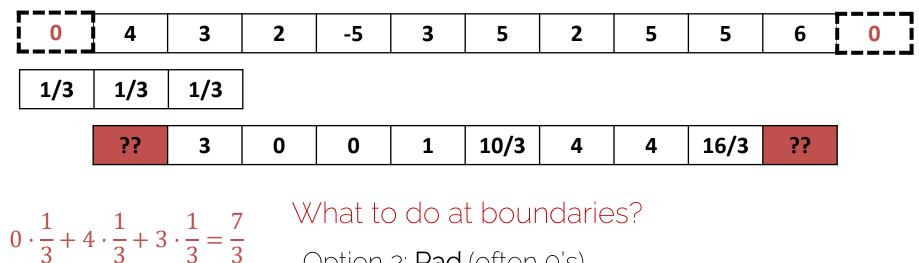


What to do at boundaries?

Option 1: Shrink

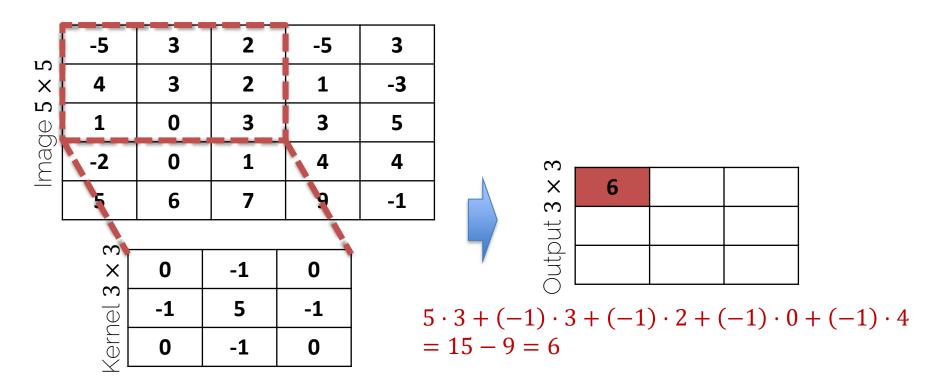
3	0	0	1	10/3	4	4	16/3
---	---	---	---	------	---	---	------

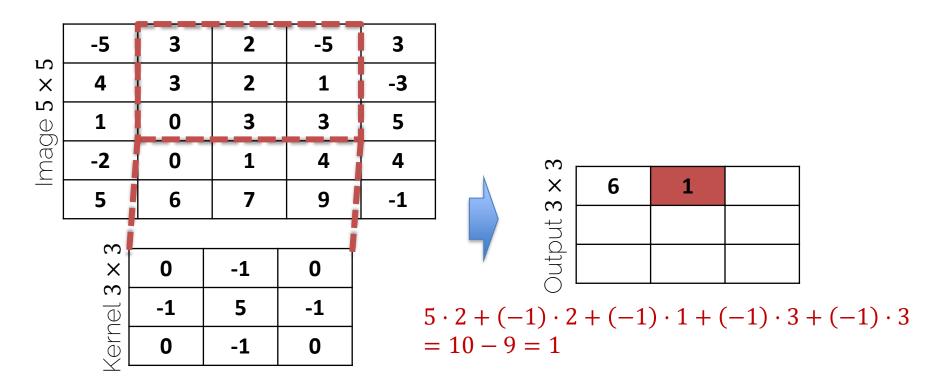
Discrete case: box filter

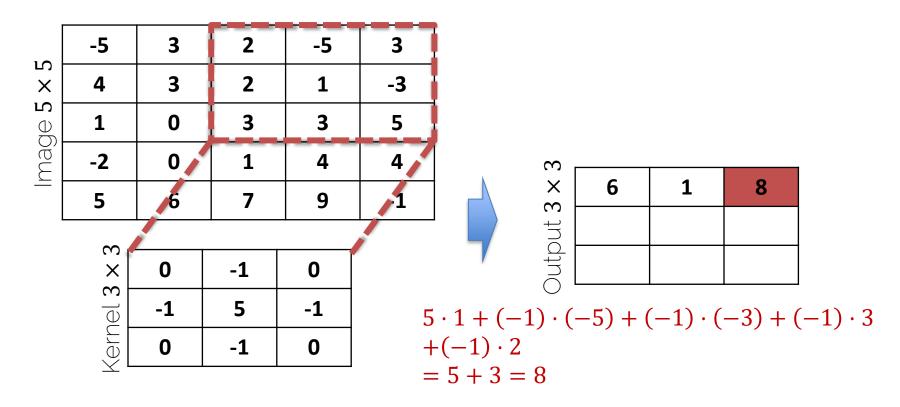


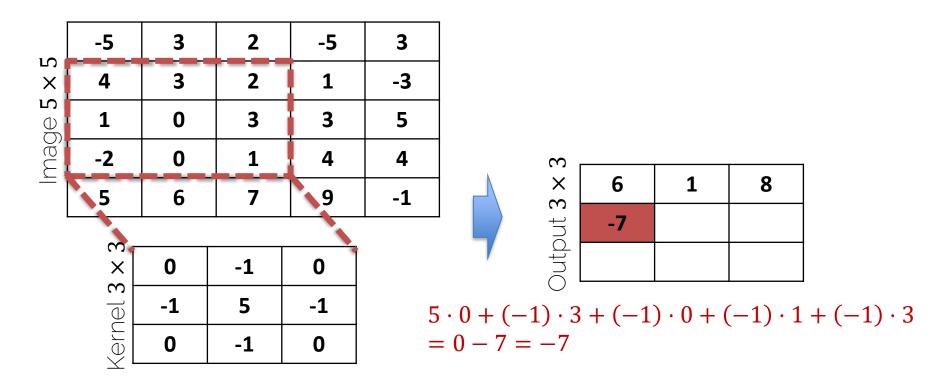
Option 2: Pad (often o's)

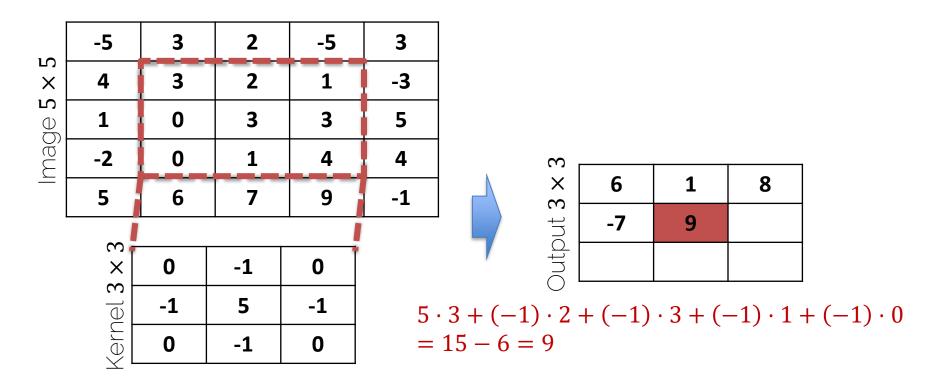
7/3 3 0	0	1	10/3	4	4	16/3	11/3
---------	---	---	------	---	---	------	------

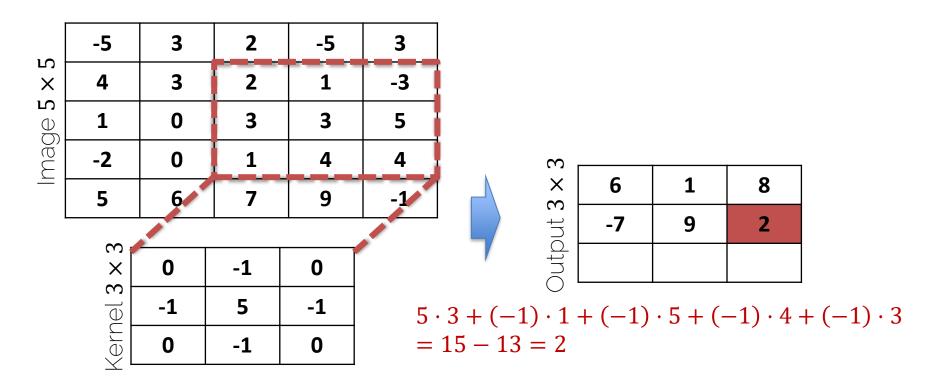




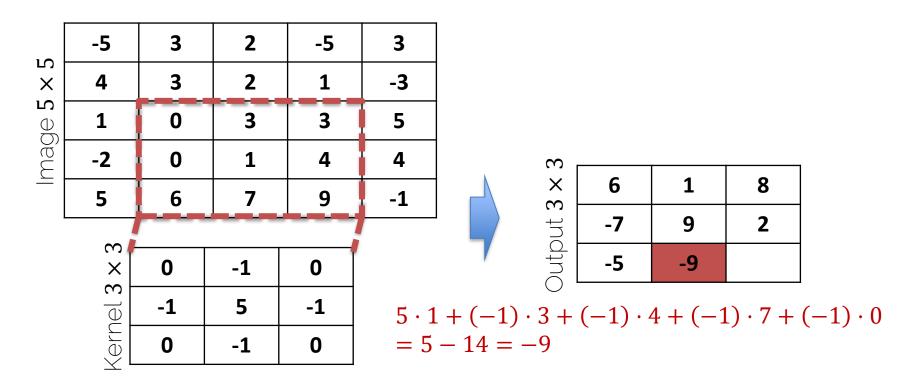












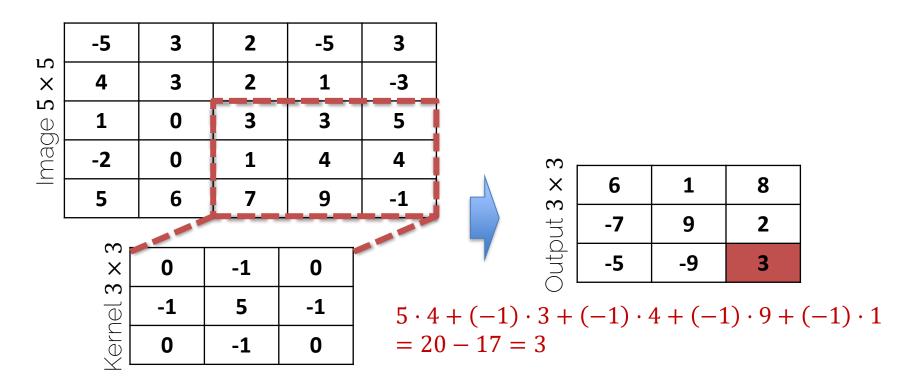
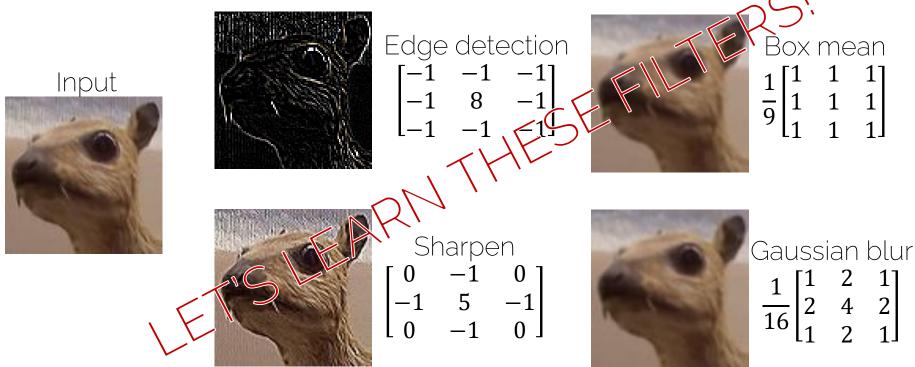
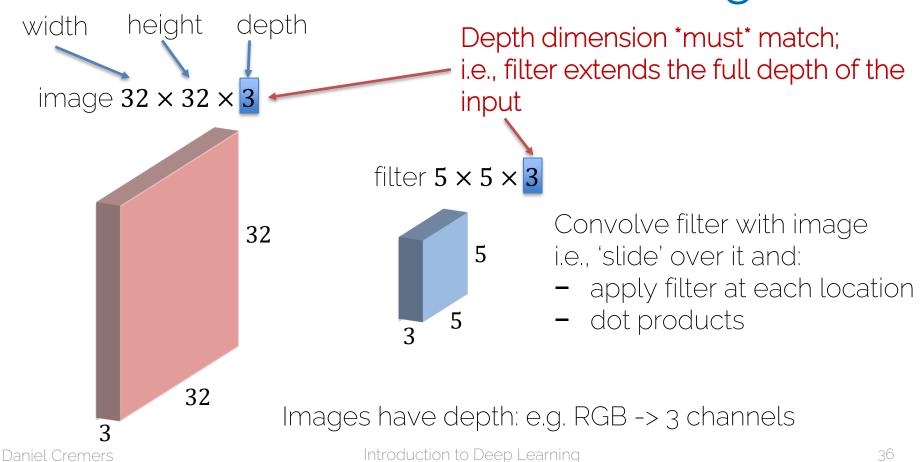


Image Filters

• Each kernel gives us a different image filter



Introduction to Deep Learning



Convolutions on RGB Images

 $32 \times 32 \times 3$ image (pixels **X**)

3

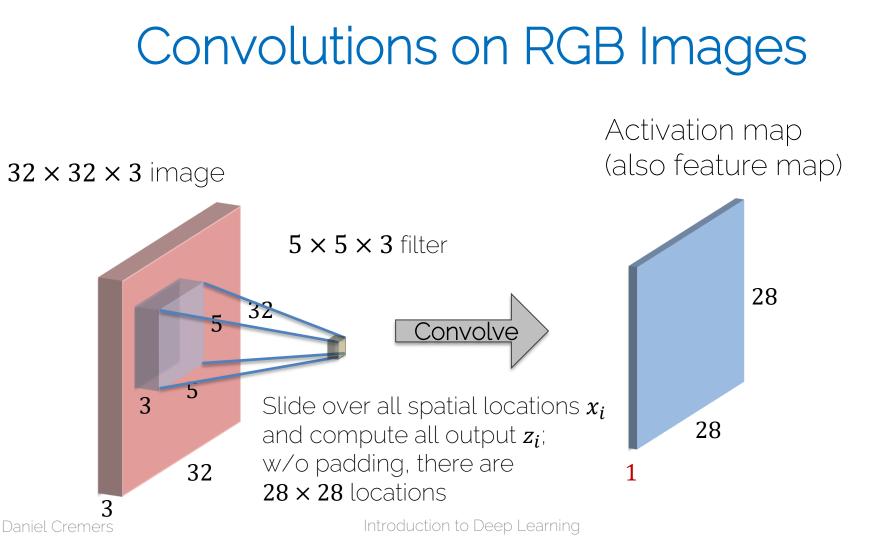
32

 $5 \times 5 \times 3$ filter (weights vector w)

 Z_i

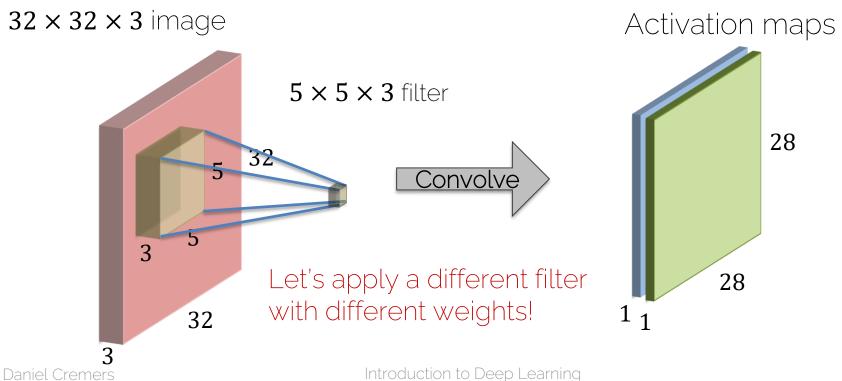
1 number at a time:
equal to dot product between filter weights w and x_i - th chunk of the image. Here: 5 · 5 · 3 = 75-dim dot product + bias

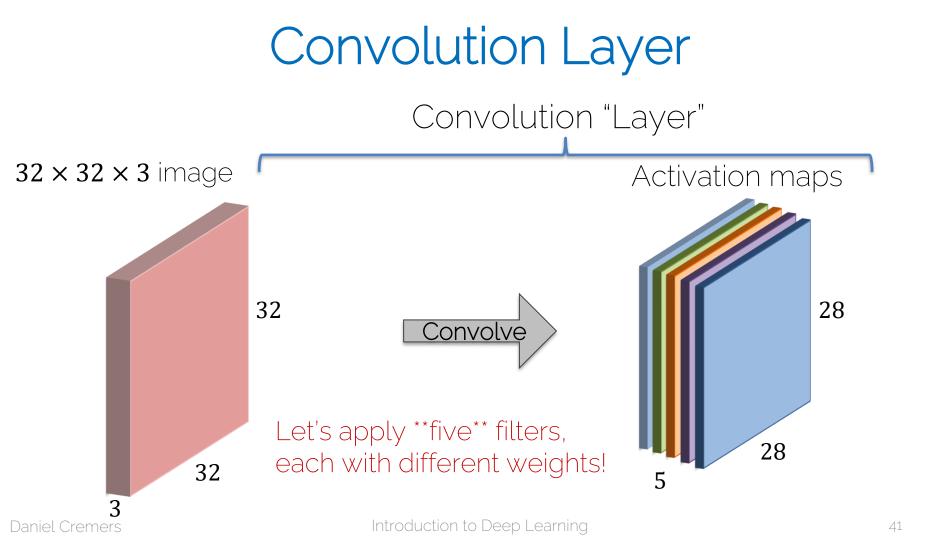
 $z_i = \boldsymbol{w}^T \boldsymbol{x}_i + \boldsymbol{b}$



Convolution Layer

Convolution Layer



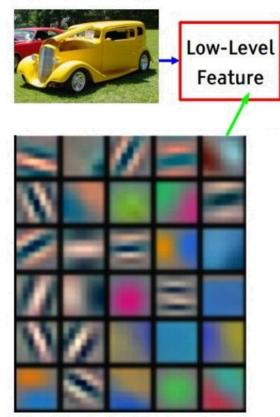


Convolution Layer

- A basic layer is defined by
 - Filter width and height (depth is implicitly given)
 - Number of different filter banks (#weight sets)

• Each filter captures a different image characteristic

Different Filters

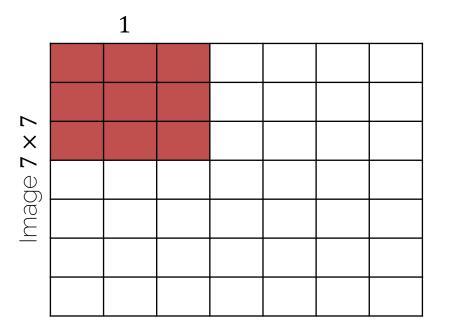


- Each filter captures different image characteristics:
 - Horizontal edges
 - Vertical edges
 - Circles
 - Squares

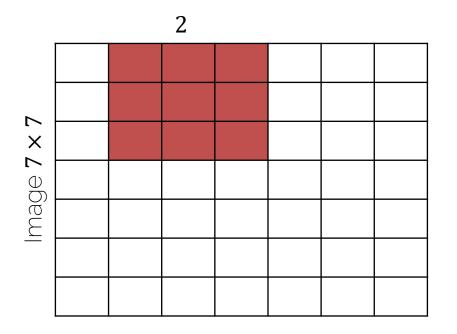
...

[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional NetworksDaniel CremersIntroduction to Deep Learning

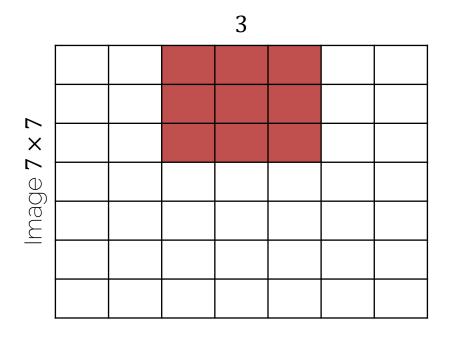
Dimensions of a Convolution Layer



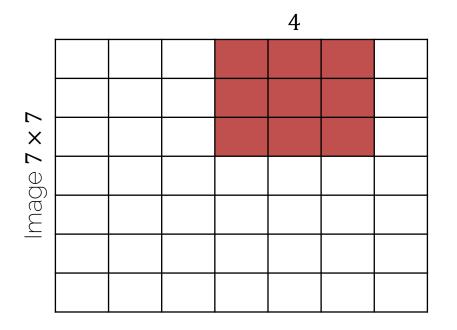
Input:	7×7
Filter:	3×3
Output:	5×5



Input:	7×7
Filter:	3×3
Output:	5 × 5



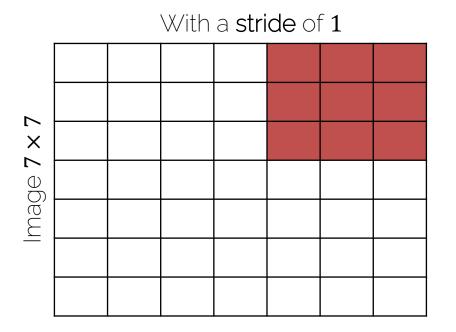
Input:	7×7
Filter:	3×3
Output:	5 × 5



Input:	7×7
Filter:	3×3
Output:	5×5

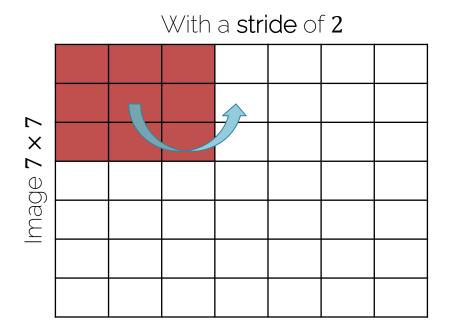
			5	
<				
_				

Input:	7×7
Filter:	3×3
Output:	5×5

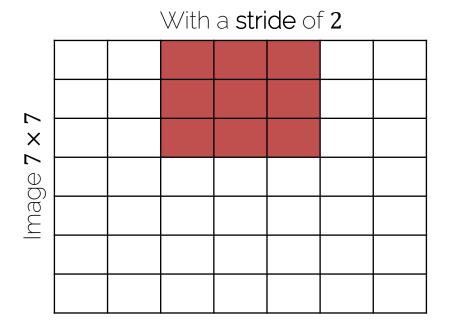


Input:	7×7
Filter:	3×3
Stride:	1
Output:	5×5

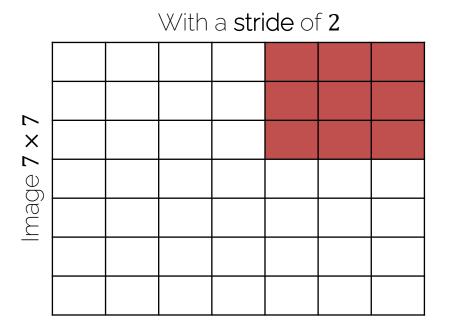
Stride of *S*: apply filter every *S*-th spatial location; i.e. subsample the image



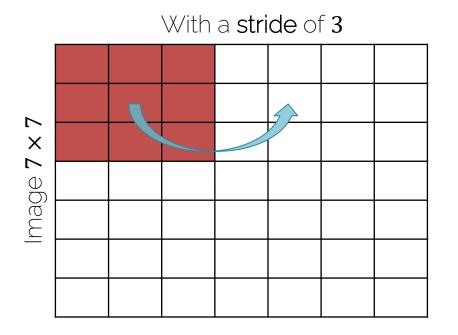
Input:	7×7
Filter:	3×3
Stride:	2
Output:	3×3



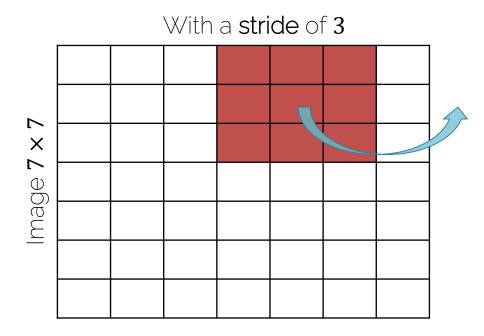
Input:	7×7
Filter:	3×3
Stride:	2
Output:	3×3



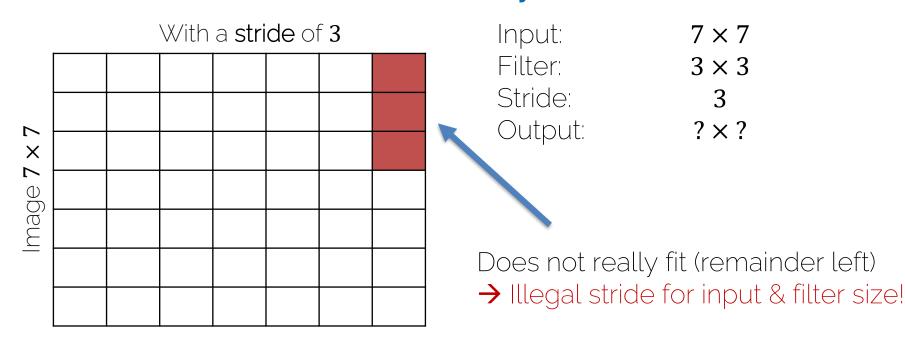
Input:	7×7
Filter:	3×3
Stride:	2
Output:	3×3



Input:	7×7
Filter:	3 × 3
Stride:	3
Output:	?×?



Input:	7×7
Filter:	3×3
Stride:	3
Output:	?×?



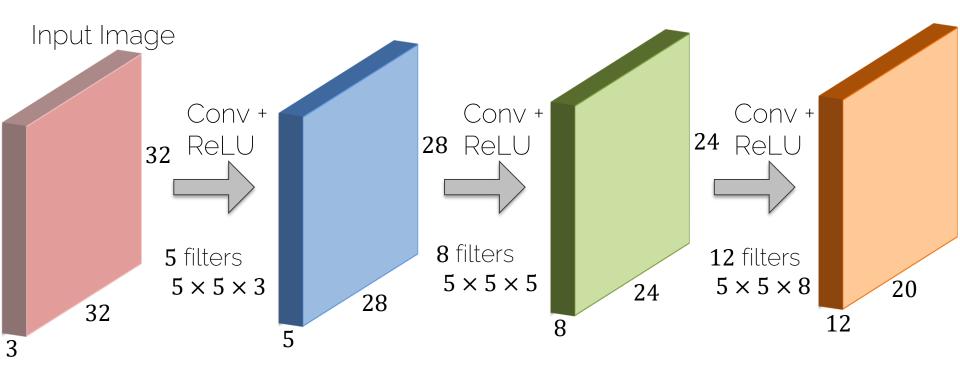
	Input width of N								
				of F					
Ν				Filter height df					
t of				r hei					
igh	Filter \	vidth c	of F	Filte					
nput height of N									
ndu									
_									

1 111

.

Input:	N imes N
Filter:	$F \times F$
Stride:	S
Output:	$\left(\frac{N-F}{S}+1\right) \times \left(\frac{N-F}{S}+1\right)$

 $N = 7, F = 3, S = 1; \frac{7-3}{1} + 1 = 5$ $N = 7, F = 3, S = 2; \frac{7-3}{2} + 1 = 3$ $N = 7, F = 3, S = 3; \frac{7-3}{3} + 1 = 2.\overline{3}$ Fractions are illegal



Shrinking down so quickly $(32 \rightarrow 28 \rightarrow 24 \rightarrow 20)$ is typically not a good idea...

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Why padding?

- Sizes get small too quickly
- Corner pixel is only used once

+ zero padding

 7×7

Image

0 0 0 0 0 0 0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input $(N \times N)$: 7×7 Filter $(F \times F)$: 3×3 Padding (P): Stride (S): 7×7 Output

Most common is 'zero' padding

Output Size:

$$\left(\left\lfloor\frac{N+2\cdot P-F}{S}\right\rfloor+1\right)\times \left(\left\lfloor\frac{N+2\cdot P-F}{S}\right\rfloor+1\right)$$

denotes the floor operator (as in practice an integer division is performed)

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Types of convolutions:

• Valid convolution: using no padding

• Same convolution: output=input size

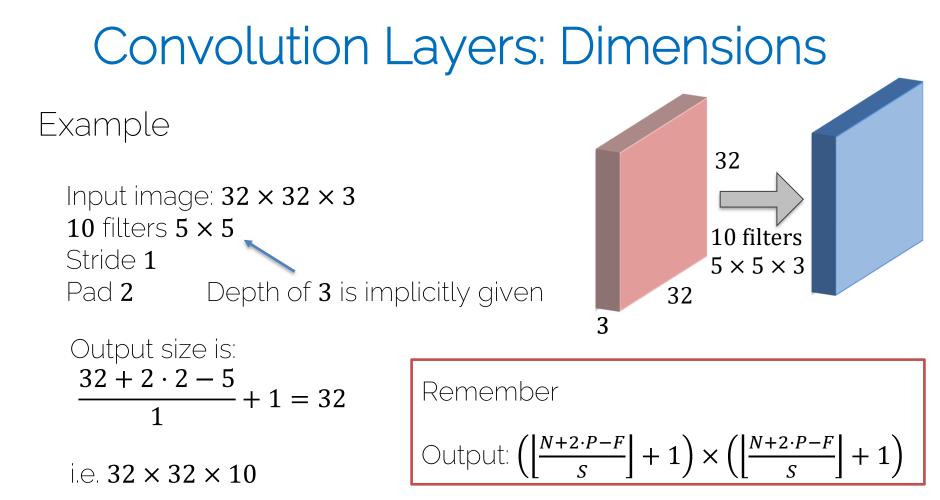
Set padding to
$$P = \frac{F-1}{2}$$

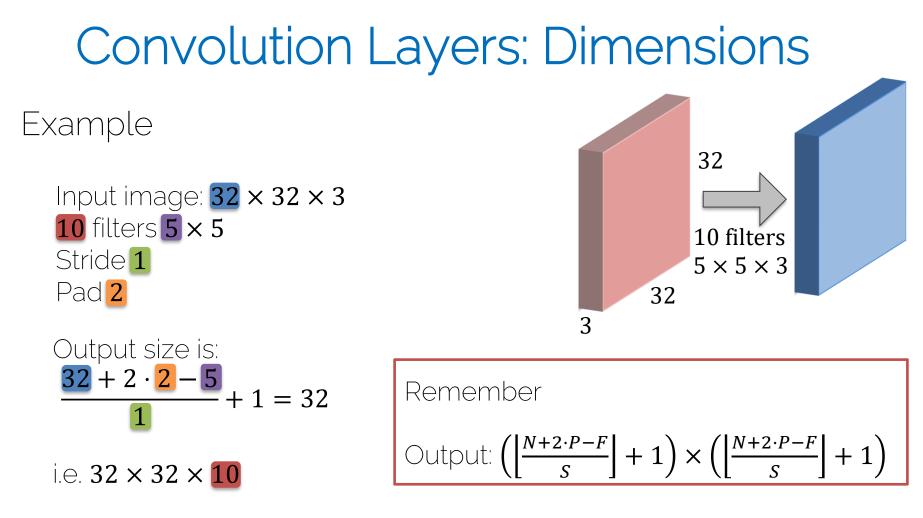
7 + zero padding

Х

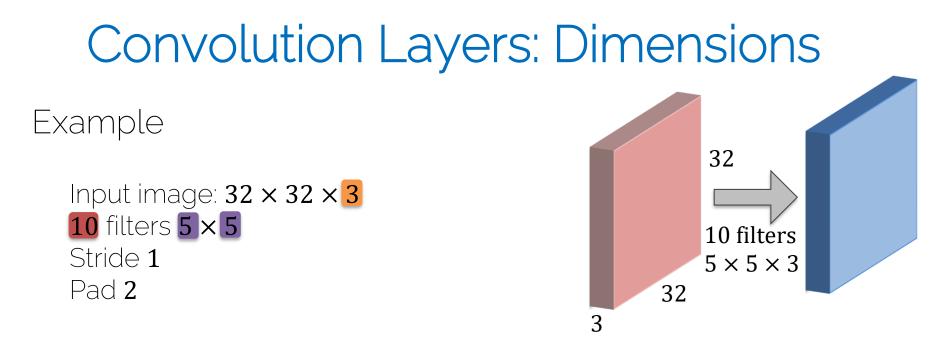
 \sim

Image





Daniel Cremers



Number of parameters (weights): Each filter has $5 \times 5 \times 3 + 1 = 76$ params (+1 for bias) -> $76 \cdot 10 = 760$ parameters in layer

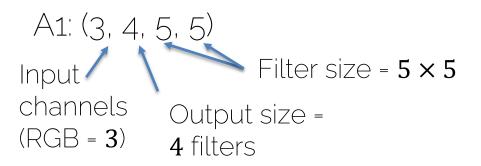
Example

- You are given a convolutional layer with **4** filters, kernel size **5**, stride **1**, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?

A1: (3,4,5,5) A2: (4,5,5) A3: depends on the width and height of the image

Example

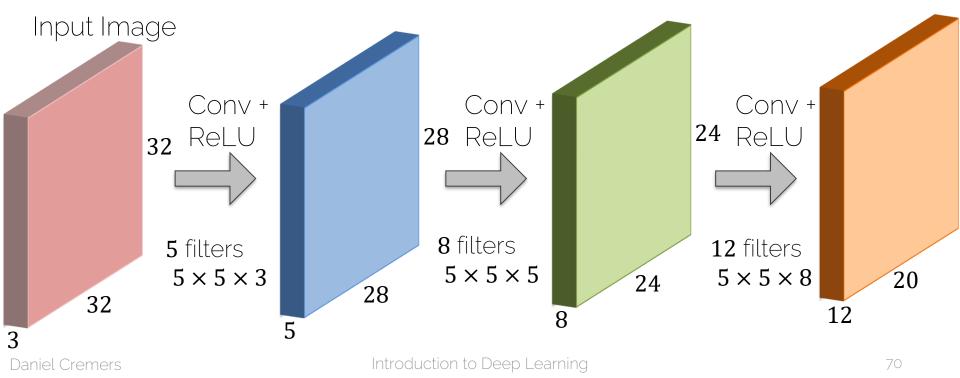
- You are given a convolutional layer with **4** filters, kernel size **5**, stride **1**, and no padding that operates on an RGB image.
- Q1: What are the dimensions and the shape of its weight tensor?



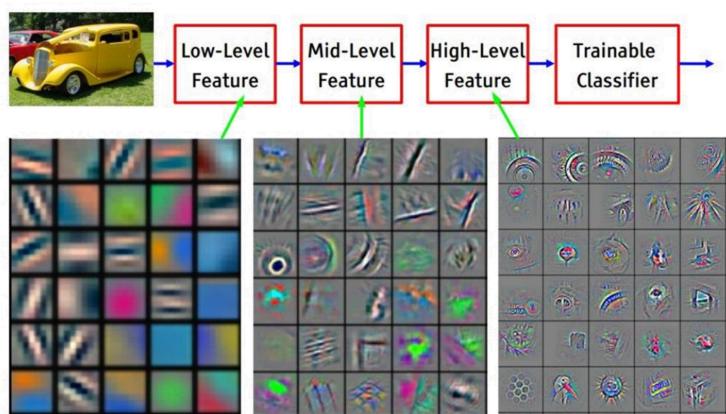
Convolutional Neural Network (CNN)

CNN Prototype

ConvNet is concatenation of Conv Layers and activations

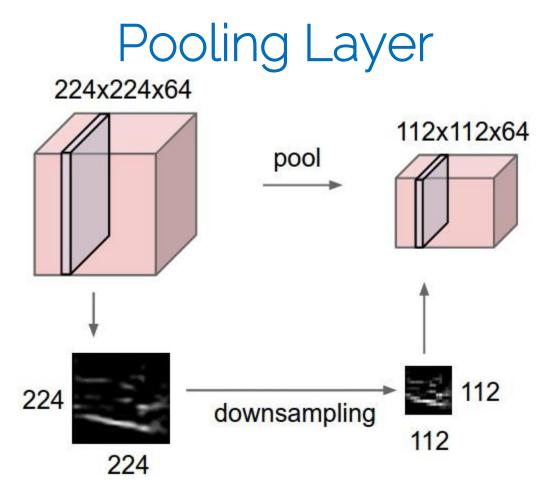


CNN Learned Filters



[Zeiler & Fergus, ECCV'14] Visualizing and Understanding Convolutional Networks Daniel Cremers Introduction to Deep Learning

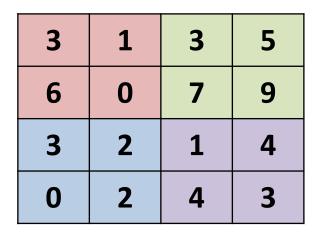
Pooling

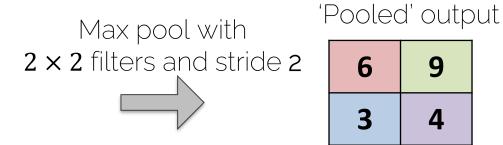


[Li et al., CS231n Course Slides] Lecture 5: Convolutional Neural Networks Daniel Cremers Introduction to Deep Learning

Pooling Layer: Max Pooling

Single depth slice of input





Pooling Layer

Conv Layer = 'Feature Extraction'
Computes a feature in a given region

- Pooling Layer = 'Feature Selection'
 - Picks the strongest activation in a region

Pooling Layer

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Two hyperparameters

Spatial filter extent F
Stride S

• Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$- W_{out} = \frac{W_{in} - F}{S} + 1$$

$$-H_{out} = \frac{H_{in} - F}{S} + 1$$

$$- D_{out} = D_{in}$$

Does not contain parameters; e.g. it's fixed function

Pooling Layer

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Two hyperparameters
 - Spatial filter extent F
 - Stride S
- Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$-W_{out} = \frac{W_{in} - F}{S} + 1$$

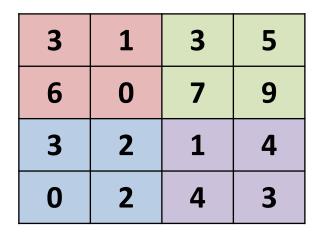
$$-H_{out} = \frac{H_{in}-F}{S} + 1$$

$$- D_{out} = D_{in}$$

• Does not contain parameters; e.g. it's fixed function

Pooling Layer: Average Pooling

Single depth slice of input



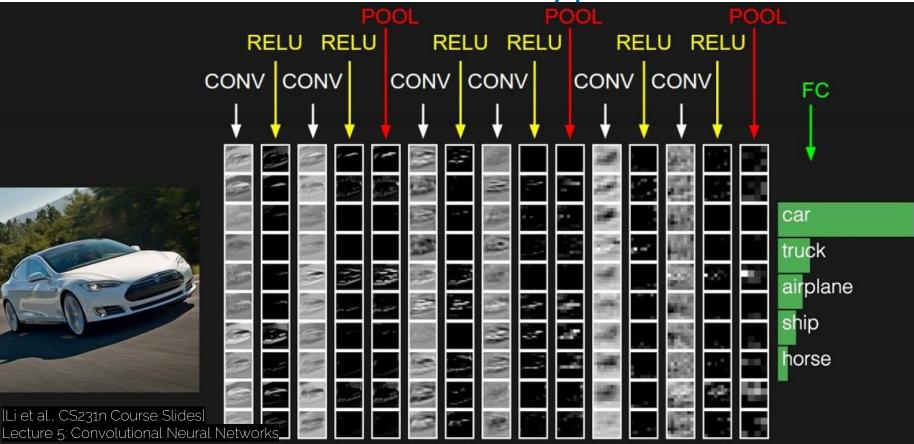
Average pool with **2 × 2** filters and stride **2**

'Pooled' output

2.5	6
1.75	3

• Typically used deeper in the network

CNN Prototype



Daniel Cremers

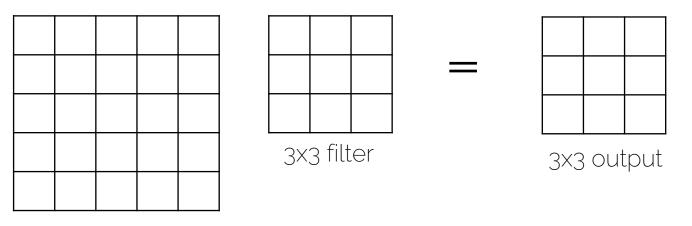
Final Fully-Connected Layer

- Same as what we had in 'ordinary' neural networks
 - Make the final decision with the extracted features from the convolutions
 - One or two FC layers typically

Convolutions vs Fully-Connected

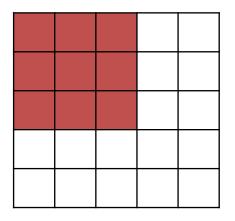
- In contrast to fully-connected layers, we want to restrict the degrees of freedom
 - FC is somewhat brute force
 - Convolutions are **structured**
- Sliding window to with the same filter parameters to extract image features
 - Concept of weight sharing
 - Extract same features independent of location

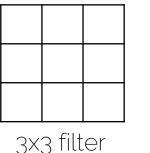
• Spatial extent of the connectivity of a convolutional filter

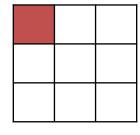


Daniel Cremers

• Spatial extent of the connectivity of a convolutional filter



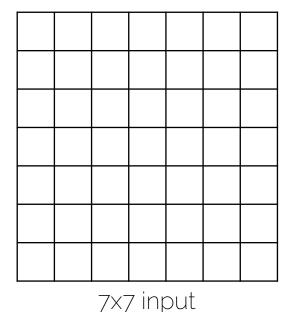


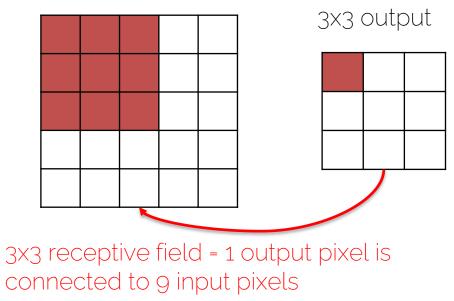


3x3 output

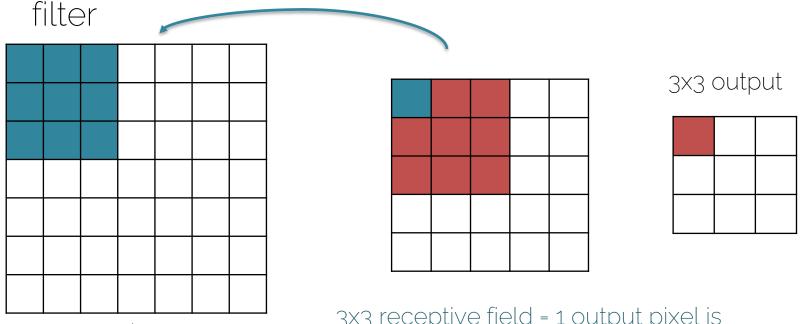
3x3 receptive field = 1 output pixel is connected to 9 input pixels

• Spatial extent of the connectivity of a convolutional filter





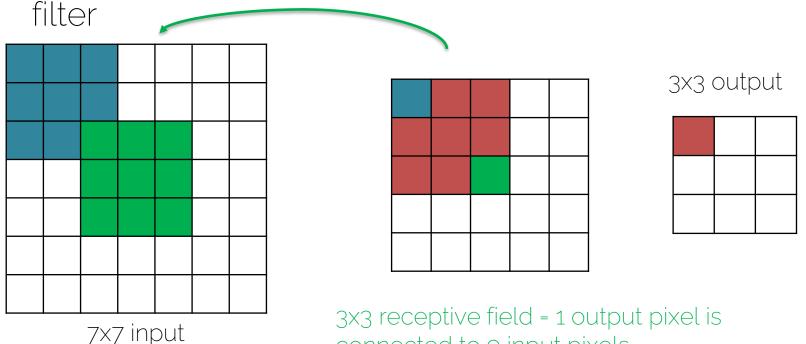
• Spatial extent of the connectivity of a convolutional



7x7 input

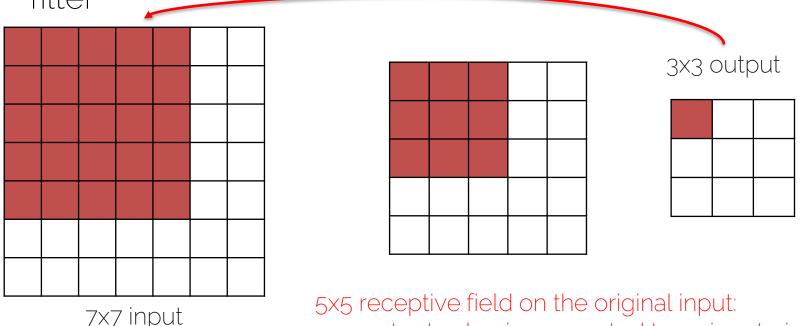
3x3 receptive field = 1 output pixel is connected to 9 input pixels

• Spatial extent of the connectivity of a convolutional



3x3 receptive field = 1 output pixel is connected to 9 input pixels

Spatial extent of the connectivity of a convolutional filter



5x5 receptive field on the original input: one output value is connected to 25 input pixels Introduction to Deep Learning

See you next time!

References

- Goodfellow et al. "Deep Learning" (2016),
 - Chapter 9: Convolutional Networks

<u>http://cs231n.github.io/convolutional-networks/</u>