TUT

Introduction to Deep
[earning (I2DL)

Exercise 5. Neural Networks

Today's Outline

« Universal Approximation Theorem

« Exercise 5
— More numpy but structured

output layer
input layer
hidden layer

Some background info

e You are currently in the numpy heavy part
After exercise 5 there will be less numpy implementations

« Creating exercises is hard
We will take your feedback to heart but we can't implement
everything this semester with our current resources
Feedback is still welcome and important!

Recap:

« The Pillars of Deep Learning

—Xercise 4

4)

Solver

4))
Data Model
4) 4)
Dataset Network
_ J _ J
4) 4 N
Dataloader L oss/Objective
_ J _ J
_ J U 4

\

Optimizer
Training Loop
Validation

J
J

Recap: Exercise 4

SVC with linear kernel LinearSVC (linear kernel)

Back to the roots!
Common machine

sepal length (cm) sepal length (cm)

L@a I’ﬂ | n g a p p rOa C h eS i SVC with RBF kemel R

- SVM .
z x
8

- Nearest Neighbors

Img src: scikit-learn.org, knowyourmeme "we don't do that here’

Universal
Approximation
Theorem

Universal Approximation Theorem

Theorem (1989, colloquial)

For any continuous function f on a compact set K, there
exists a one layer neural network, having only a single
hidden layer + sigmoid, which uniformly approximates f to
within an arbitrary e > 0on K.

0.40 ’ . 1040 h=05
AL z I =Nos
o0 =L 0.60 \b=-17
A A a5
INT 2 S5
N0 k=0 i 030/
" y [— g O3
0.90) = N
| ' 0.70

Universal Approximation Theorem

Readable proof:
https.//mcneela.github io/machine_learning/2017/03/21/

Universal-Approximation-Theorem.ntml
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
http.//neuralnetworksanddeeplearning.com/chap4.ntmil

https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
http://neuralnetworksanddeeplearning.com/chap4.html

A word of warning

Source: http//blog.datumbox.com/wp-content/uploads/2013/10/gradient-

descentpng

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png
http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

How deep Is your love

« Shallow
(1 hidden layer)

 Deep
(>1 hidden layer)

10

Obvious Questions

« Q Do we even need deep networks?
A: Yes. Multiple layers allow for more abstraction power

given a fixed computational budget in comparison to a
single layer - better at generalization

« QS0 we just build 100 layer deep networks?
A: Not trivially ;-)
- Constraints: Memory, vanishing gradients, .
- deeper |- working better

11

Exercise 5

Recap: Exercise 4

EX5:

EX4:

 Small dataset
And simple objective

« Simple classifier
Single weight matrix

« Gradient descent solver
Whole forward pass in memory

CIFAR10
Actual competitive task

Modularized Network
Chain rule rules

Stochastic Descent

13

f
class Classifier{Network): det ur‘d[

Classifier of the form y = sigmoid{X = W)

def

def

Recap: Exercise 4

Predicted labels for the data in X, shape N x 1
init__({self, num_features=2): ~dimensienal array of length M with classification scores.

super(Classifier, self).__init__("classifier")

assert self.W is not None, "weight matrix W is not initialized"
f h f he bi
self.num_features = num_features # add & colwwmn of 15 to the data for the bias term

batch_size, _ = X.shape
% = np.concatenate((X, np.ones{{batch_size, 1}}}, axis=1)
save the samples for the backward pass

self.W = None
initialize_weights{self, weights=Noneg self.cache = X
LLLINLE
#0 riable
Initialize the weight matrix W ¥
:param weights: optional weights for inNg Lon ¥ RS EER SRR RN RS TR E R BRI RRRR R
[T # TO #
X . . Inglement the forward pass and return the output of the model. Note #
if weights is not MNone:)
. # that you need to implement the function self.sigmoid() for that #
assert weights.shape == (self.num_features + 1, 1), \ L T T P E P r e
"weights for initialization are not in the correct fhape
)

self.W = weights y = K.dot{self.W)
else: y = self.sigmoidiy}

self.W = @.801 = np.random. randn(self.num_featu 1,
EEE R ST P b S L PR S e SR P LR R LT T R P

END OF YOUR CODE 2

Hama 2 = = 2 = = =

ray of training data. Each row is a D-dimensional point.

14

New: Modularization

- 1 Sigmoid:
Chain Rule: e e

pass

af af ad def forward(self, x):

a ad a :param x: Inputs, of any shape

sreturn out: Output, of the same shape as x
:return cache: Cache, for backward computation, of the same shape as x

def backward(self, dout, cache):

sreturn: dx: the gradient w.r.t. input X, of the same shape as X

15

Overview Exercise 5

« One notebook
— But a long one..

« Multiple smaller implementation objectives

Definition

Cﬁir}-%i;i;l—nhdhl]

* i e probability that the maded stuigns for Bha k'th class whan Tha i'th sampls |8 the input,
= g = LY the trus atel of the ith sampls i & and O otherwise. This bl calied 8 one-hot encoding.

Task: Check Formada
wumuunwdmﬂhzummmnumnm

16

Outlook Ex6: CIFAR10 again

run optimize()

-

Hyperparameters Parameters
n_layers = 3)

LX n_neurons = 512 # = E“p'ii'fn?faﬁm
learning_rate = 0.1
n_layers = 3)

{3 nreuosz 0wy T Nesns
learning_rate = 0.01
n_layers =5)

LX n_neurons = 256 # E E”p'ii'fnrigﬁm
learning rate = 0.1

22

Score

80%

92%

17

TUT

See you next week

©

	Slide 1: Introduction to Deep Learning (I2DL)
	Slide 2: Today’s Outline
	Slide 3: Some background info
	Slide 4: Recap: Exercise 4
	Slide 5: Recap: Exercise 4
	Slide 6: Universal Approximation Theorem
	Slide 7: Universal Approximation Theorem
	Slide 8: Universal Approximation Theorem
	Slide 9: A word of warning
	Slide 10: How deep is your love
	Slide 11: Obvious Questions
	Slide 12: Exercise 5
	Slide 13: Recap: Exercise 4
	Slide 14: Recap: Exercise 4
	Slide 15: New: Modularization
	Slide 16: Overview Exercise 5
	Slide 17: Outlook Ex6: CIFAR10 again
	Slide 18: See you next week ☺

