

Introduction to Deep Learning (I2DL)

Exercise 11 and 12: NLP

Today's Outline

- Exercise 10 Review
- Natural Language Processing
 Exercise 11 and 12

Exercise 10

Exercise 10: Semantic Segmentation

- Goal: Assign a label to each pixel of the image
- Output of the network: Segmentation mask with same shape as input image
- Dataset: MSRC v2 dataset, 23 object classes, contains 591 images with "accurate" pixel-wise labeled images

Suggested Approach

- Idea: Encoder-Decoder Architecture
- Transfer Learning: CNNs trained for image classification contain meaningful information that can be used for segmentation -> Encoder
- Check out: pre-trained networks like MobileNets

"Default" Approach (93.15)

- Take an already pretrained segmentation network
- Change the output layer to our number of classes
- Success!

from torchvision.models.segmentation import lraspp_mobilenet_v3_large
from torchvision.models.segmentation.lraspp import LRASPPHead

self.mobilenet = lraspp_mobilenet_v3_large(pretrained=True)
self.mobilenet.classifier = LRASPPHead(40, 960, hparams['n_classes'],
128)

When/what to finetune?

So... something else? (92.38)

• Idea: Let's build a UNet

Let's start with pretrained backbone

Get pretrained network and identify skip connection candidates

```
# get pretrained net
self.feature_extractor = mobilenet_v2(True).features
for params in self.feature_extractor.parameters():
    params.detach()
#output size should be: [-1, 1280, 8, 8]
```

```
# define forward hooks
# interesting layers:1:(16,120) 3:(24,60): 6:(32,30); 10:(64,15); 13:
(96,15); 16:(160,8); 17:(320,8); 18(1280,8)
self.horizontalLayerIndices = [6, 13, 18]
```

Let's check forward

 Forward backbone but keep track of skips

- "Bottleneck"
- Upsampling and filling in skips

layeroutputs = []
for i in range(len(self.feature_extractor)):
 x = self.feature_extractor[i](x)
 if i in self.horizontalLayerIndices:
 layeroutputs.append(x)

x = layeroutputs[-1]
x = self.initialConv(x)

k = 3 if self.use30features else 4

```
for i in range(len(self.upsampler)):
    x = self.upsampler[i](x)
    if i < len(self.upsampler)-k:
        x = torch.concat((x, layeroutputs[-2-i]), dim=1)
    x = self.convs[i](x)</pre>
```

Some comments

- Bottleneck seems to be too tight
 - Make room for multiple non-linearities before upsampling and merging

- Bottleneck is using 8x8 with 1280 features
 - Use 1x1 convolutions to shrink down size first (we are not imagenet with 1000 classes where would need it)

0	feature_extractor	L	Sequential	L	2.2 M
1	input_normalization	L	Normalize	L	0
2	upsampler	L	ModuleList	L	0
3	convs	Ĺ	ModuleList	Ì	1.6 M
4	initialConv	Í.	Sequential	Ì	410 K
5	lossFcn	L	CrossEntropyLoss	1	0

Some comments

- Good: usage of variables for filter/network size
 - Just don't hardcore numbers in your init unless you really want to keep them

```
featureSize = np.linspace(featureSize, num_classes, 5)
featureSize = featureSize.astype('int')
```

- Don't forget to use data augmentation even when transfering weights
 - Could have been done outside of notebook, just a reminder ⁽³⁾

Natural Language Processing

Natural Language Processing

- So far, it has always been clear how to feed data into our model
- Tabular Data -> Load each row as vector and normalize data
- Images -> Convert Image into Matrix for convolution or flatten into vector for linear layers
- Text -> "What should I do with this?" -> ?

Tokenization

- Split text into individual tokens
- Tokens can be
 - Individual words like "Hi", "these", "are", "tokens"
 - Subwords like "sub" and "words"
 - Letters like "h", "i"
 - Punctuations and white spaces like "!", "," or " "
 - Combination of all
- Assign each token an ID: "Hi" -> 53, "Bye" -> 647

Tokenization - Training

- For simple Tokenizer:
 - Loop through dataset and split strings by whitespace
 - Add every new "word" into dictionary and assign ID
 - That's it!
- Problems:
 - What happens with words that were not in the dataset?
- Possible Solutions:

Exercise 11 Notebook 1

- Add unknown token placeholder
- Use a more sophisticated tokenizer like Byte-Pair Éncoder

Map Style Datasets

- So far we have always used a map style Dataset:
 - Given an index, return the item at this index
- This approach works great for
 - Small Tables -> simply return the row where row_id = index
 - Images -> load image from disk by indexing a list of paths

Map Style Datasets

- Advantages:
 - Data can be prefetched
 - Data shuffling is easy to implement
 - Parallelization is easy to implement
- Problems:
 - What happens if your data is stored in very large text files of tables? We cannot load everything in memory to properly index it
 - What happens if our data is coming in as a stream? (Think of live audio or video feed!)

Iterable Datasets

- Do we really need to index the data? All we want is to get the next sample!
- Iterable Datasets: Instead of a __getitem__(index) method we implement a __iter__() method
- Read through the file/table line by line and yield the current sample
 - We do not have to load the entire file into memory!

Iterable Datasets

• Advantages

Exercise 12 Notebook 1

- Less Memory Usage
- Easy to seamlessly cycle through multiple files
- Disadvantages
 - Shuffling data in data loader not possible
 - Parallel Processing and using multiple workers for data loading not as easy to implement

Data Collator

- So far data usually always had the same dimensions
 - We can easily create batches by adding a tensor dimension!
- Problem with natural language: Not every sentence is the same length!

Data Collator

- Solution: Add padding tokens to the shorter sentences in a batch to match the lengths
 - ["Hi" "how" "are" "you" "?"] -> 5 Tokens
 - ["Good" "and" "you" "?" "<pad>"] -> 4 Tokens -> Add pad to match lengths!
- This is implemented in the Data Collator, which is part of the Data Loader!

Exercise 12 Notebook 1

Transformers – High Level

Exercise 11

Exercise 11: Content and Goal

- Notebook 1
 - Introduction to Byte Pair Tokenization
 - Training Algorithm and Examples
 - Goal: Train own tokenizer on a dataset
- Notebook 2
 - Introduction to Embeddings Convert Tokens into Vectors

Exercise 11: Content and Goal

- Notebook 3
 - Intuition behind Attention Mechanism
 - Build Attention and Multi Head Attention Block from
 Scratch
- Notebook 4
 - Positional Encodings Fixing the Attention Block

Exercise 12

Exercise 12: Content and Goal

- Notebook 1
 - Iterable Style Datasets
 - Data Collator for NLP Tasks
- Notebook 2
 - Transformer Model from Scratch

Good Luck with the exercise and exam! (ئ)