TUT

Introduction to Deep
[ earning (I2DL)

Exercise 11 and 12: NLP



Today's Outline

 EXxercise 10 Review

« Natural Language Processing i
— Exercise 11and 12 A~




Exercise 10



—Xercise 10 Semantic Segmentation

Goal: Assign a label to each pixel of the image
Output of the network: Segmentation mask with same shape as input
image

Dataset: MSRC v2 dataset, 23 object classes, contains 591 Images with
‘accurate’ pixel-wise labeled images

- L - & 8
— — ] ——— e b "

"AMBASSADOR yares

S




Suggested Approach

|dea: Encoder-Decoder Architecture

Transfer Learning: CNNs trained for image classification contain
meaningful information that can be used for segmentation ->

Encoder
Check out: pre-trained networks like MobileNets

-Eﬂ # V, £

ﬂ Transfer of weights

a8 po-co




‘Default” Approach (93.15)

« Take an already pretrained segmentation network
« Change the output layer to our number of classes
* Success!

from torchvision.models.segmentation import lraspp_mobilenet_v3_large

T R

B i i T i i T T N e Tarard

self.mobilenet = lraspp_mobilenet_v3_large(pretrained=True)
self.mobilenet.classifier = LRASPPHead(40, 960, hparams|['n_classes'],
128)

6



When/what to finetune?

Dataset
Size
r'y

Quadrant 1 Quadrant 2

Large dataset, Large dataset

but different from and similar to the

the pre-trained pre-trained

model’s dataset model’s dataset
Dataset
Similarity

Quadrant 3 Quadrant 4

Small dataset and Small dataset and

different from the similar to the pre-

pre-trained trained model’s

model's dataset dataset

Dataset
Size

Train the entire
model

-

4

Train some layers and
leave others frozen

.

v

Dataset

Train some layers and
leave others frozen

3

Similarity
Freeze the
convolutional base




S0.. something else? (92.38)

e |dea: Lets bulld a UNet

2 e
LI

E 8¢ y 512 512 100¢ §12 i mwm

-E-E —~<:-“ # max pool 2x2
B 3’ 1004 . X 4 ’W‘COWZXZ
- conv 1x1



et's start with pretrained backbone

« Get pretrained network and identify skip connection
candidates

# get pretrained net

self.feature_extractor = mobilenet_v2(True).features

for params in self.feature_extractor.parameters():
params.detach()

#output size should be: [-1, 1280, 8, 8]

# define forward hooks

# interesting layers:1:(16,120) 3:(24,60): 6:(32,30); 10:(64,15); 13:
(96,15); 16:(160,8); 17:(320,8); 18(1280,8)
self.horizontalLayerIndices = [6, 13, 18]



Forward
backbone but
keep track of skips

‘Bottleneck’

Upsampling and
filling In skips

et's check forward

layeroutputs = []

for

X
nn

=
I

i in range(len(self.feature_extractor)):

x = self.feature_extractor([i] (x)

if 1 in self.horizontallLayerIndices:
layeroutputs.append(x)

layeroutputs [-1]
self.initialConv(x)

= 3 if self.use30features else 4

i in range(len(self.upsampler)):

x = self.upsampler[i] (x)

if i < len(self.upsampler)-k:

x = torch.concat((x, layeroutputs[-2-i]), dim=1)
self.convs[i] (x)

X

10



Some comments

» Bottleneck seems to be too tight

— Make room for multiple non-linearities before upsampling and

merging -

H»I ['"‘l = conv 3x3, Rel.U

5 3 ' : = 00py S0 Y0P

I-“ — :-—“ # max pool 2x2

4 up-conv 2x2
,-o:—o— e el

« Bottleneck is using 8x8 with 1280 features

— Use 1x1 convolutions to shrink down size first (we are not
imagenet with 1000 classes where would need it)

@ | feature_extractor | Sequential | 2.2 M
1 | input_normalization | Normalize | @
2 | upsampler | ModuleList | @
3 | convs | ModuleList | =1
4 | initialConv | Sequential ||a10 K
5 | lossFen | CrossEntropylLoss | '@



Some comments

« Good: usage of variables for filter/network size

— Just don't hardcore numbers in your init unless you really
want to keep them

featureSize = np.linspace(featureSize, num_classes, 5)
featureSize = featureSize.astype('int"')

« Dont forget to use data augmentation even when
transfering welights

— Could have been done outside of notebook, just a
reminder ©

12



TUT

Natural Language
Processing



Natural Language Processing

So far, it has always been clear how to feed data into our
model

Tabular Data -> Load each row as vector and normalize data

Images -> Convert Image into Matrix for convolution or
flatten into vector for linear layers

Text > \What should | do with this?" -> 7



Tokenization

« Split text into individual tokens
o« Tokens can be

— Individual words like ,HI', ,these’, ,are’ ,tokens
— Subwords like "'sup” and ,words’

— Letterslike ,h", 1"

— Punctuations and white spaces like ,I", ," or ,
— Combination of all

« Assign each token an ID: HI' -> 53, ,Bye" -> 0647



Tokenization - Training

* Forsimple Tokenizer:
— Loop through dataset and split strings by whitespace
— Add every new ,word" into dictionary and assign 1D
— Thats it

* Problems:
— What happens with words that were not in the dataset?

* Possible Solutions: Exercise 11
— Add unknown token placeholder E/ Notebook 1
— Use a more sophisticated tokenizer like Byte-Pair Encoder



Map Style Datasets

« S0 far we have always used a map style Dataset:

Given an index, return the item at this index

« Thisapproach works great for

Small Tables -> simply return the row where row_id =
INndex

Images -> load image from disk by indexing a list of
paths



Map Style Datasets

* Advantages
e Data can be prefetched
* Data shuffling is easy to implement
e Parallelization is easy to Implement

e Problems

* \What happens if your data is stored in very large text files of
tagtes? We cannot load everything in memory to properly
index it

* What happens if our data is coming in as a stream? (Think of
live audio or video feed!)



lterable Datasets

Do we really need to index the data? All we want is to get
the next sample!

terable Datasets: Instead of a __getitem__(index) method
we implement a __iter__0 method

Read through the file/table line by line and yield the

current sample
* We do not have to load the entire file into memory!



lterable Datasets

\ Exercise 12

« Advantages Notebook 1

 [Less Memory Usage
« FEasyto seamlessly cycle through multiple files

« Disadvantages

« Shuffling data in data loader not possible

« Parallel Processing and using multiple workers for data
loading not as easy to iImplement



Data Collator

« S0 far data usually always had the same dimensions

« We can easily create batches by adding a tensor
dimension!

« Problem with natural language: Not every sentence Is
the same length!



Data Collator

Solution: Add padding tokens to the shorter sentences
N a batch to match the lengths

* ['HI" "how" "are’ 'you" 7'l -> 5 Tokens

« [[Good" 'and” "'you" 7" '<pad>'] -> 4 Tokens -> Add pad to
match lengths!

This is implemented in the Data Collator, which is part
of the Data Loader!

Exercise 12
Notebook 1



Transformers -High Level

Convert Token IDs
into Dense Vectors

Input Tokens — Embedding —{ Encoder }—
Layer

Process input sequence

Process previous output tokens
and predict next token based on
previous tokens and processed

inputs
<start= + Embedding Output .
Ouiput Toksns —_— s —_— Decoder v ——» Qutput Tokens
Initialized sequence with I \

"empty” start token
Append new output

to sequence

Transform decoder output
Into probability distribution
over Word IDs



Exercise 11



-xercise 11 Content and Goal

o« Notebook 1

« Introduction to Byte Pair Tokenization
« Training Algorithm and Examples
« Goal Train own tokenizer on a dataset

« Notebook 2

« [ntroduction to Embeddings - Convert Tokens into
Vectors



-xercise 11 Content and Goal

o Notebook 3

 Intuition behind Attention Mechanism

 Build Attention and Multl Head Attention Block from
Scratch

« Notebook 4
« Positional Encodings - Fixing the Attention Block



Exercise 12



—xercise 12: Content and Goal

o« Notebook 1

« |terable Style Datasets
« Data Collator for NLP Tasks

« Notebook 2
« Transformer Model from Scratch



TUT

Good Luck with the
exercise and exam!

©



	Slide 1: Introduction to Deep Learning (I2DL)
	Slide 2: Today’s Outline
	Slide 3: Exercise 10
	Slide 4: Exercise 10: Semantic Segmentation
	Slide 5: Suggested Approach
	Slide 6: “Default” Approach (93.15)
	Slide 7: When/what to finetune?
	Slide 8: So… something else? (92.38)
	Slide 9: Let’s start with pretrained backbone
	Slide 10: Let’s check forward
	Slide 11: Some comments
	Slide 12: Some comments
	Slide 13: Natural Language Processing
	Slide 14: Natural Language Processing
	Slide 15: Tokenization
	Slide 16: Tokenization - Training
	Slide 17: Map Style Datasets
	Slide 18: Map Style Datasets
	Slide 19: Iterable Datasets
	Slide 20: Iterable Datasets
	Slide 21: Data Collator
	Slide 22: Data Collator
	Slide 23: Transformers –High Level
	Slide 29: Exercise 11
	Slide 30: Exercise 11: Content and Goal
	Slide 31: Exercise 11: Content and Goal
	Slide 32: Exercise 12
	Slide 33: Exercise 12: Content and Goal
	Slide 38: Good Luck with the exercise and exam! ☺

