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CVPR 2020 Tutorial on

Novel View Synthesis: From Depth-Based Warping to
Multi-Plane Images and Beyond

Novel view synthesis is a long-standing problem at the intersection of computer graphics and
computer vision. Seminal work in this field dates back to the 1990s, with early methods proposing
to interpolate either between corresponding pixels from the input images, or between rays in
space. Recent deep learning methods enabled tremendous improvements to the quality of the
results, and brought renewed popularity to the field. The teaser above shows novel view
synthesis from different recent methods. From left to right: Yoon et al. [1], Mildenhall et al. [2],
Wiles et al. [3], and Choi et al. [4]. Images and videos courtesy of the respective authors.
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New edition of my book — almost done

Computer Vision: Algorithms and Applications, 2nd ed.

© 2021 Richard Szeliski, Facebook

L rex

Computer Vision

Algorithms and Applications
Second Editson
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https://szeliski.org/Book
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New edition of my boo

Introduction 1

What is computer vision? e A brief history e
Book overview e Sample syllabus e Notation

Image formation 33

Geometric primitives and transformations
Photometric image formation e The digital camera

Image processing 105

Point operators e Linear filtering o
Non-linear filtering e Fourier transforms e
Pyramids and wavelets o Geometric transformations

Model fitting and optimization 187

Scattered data interpolation e
Variational methods and regularization e
Markov random fields

tn

Deep learning 231

Supervised learning ® Unsupervised learning o
Deep neural networks e Convolutional networks e
More complex models

Recognition 325

Instance recognition e Image classification
Object detection e Semantic segmentation e
Video understanding e Vision and language

Richard Szeliski

Feature detection and matching 395

Points and patches o Edges and contours e
Contour tracking e Lines and vanishing points e
Segmentation

8 Image alignment and stitching 485

Pairwise alignment e Image stitching e
Global alignment e Compositing

9  Motion estimation 537

Translational alignment e Parametric motion e
Optical flow e e Layered motion

10 Computational photography 589

Photometric calibration e High dynamic range imaging e
Super-resolution and blur removal e
Image matting and compositing e
Texture analysis and synthesis

11 Structure from motion and SLAM 663

Geometric intrinsic calibration e Pose estimation »
Two-frame structure from motion e
Multi-frame structure from motion e

Simultaneous localization and mapping (SLAM)

12 Depth estimation 729

Epipolar geometry e Sparse correspondence e
Dense correspondence o Local methods  »
Global optimization e Deep networks e
Multi-view stereo  ® Monocular depth estimation

13 3D reconstruction 783

Shape fromX e 3D scanning e
Surface representations e Point-based representations e
Volumetric representations o Model-based reconstruction e
Recovering texture maps and albedos

o

14 Image-based rendering 837

View interpolation e Layered depth images e
Light ficlds and Lumigraphs e Environment mattes e

Video-based rendering
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Outline

* Multi-view stereo

* Image-Based Rendering
* Lumigraphs, Light Fields, Sprites with Depth, and Layers

* Virtual Viewpoint Video

* 360° and 3D Video

* 3D Photos

* Reflections and transparency
* Neural rendering



Multi-view Stereo
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View Interpolation

* Given two images with correspondences, morph (warp and cross-
dissolve) between them [Chen & Williams, SIGGRAPH’93]

depth image novel view
[Matthies,Szeliski,Kanade’88]
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View Morphing

* Morph between pair of images using epipolar
geometry [Seitz & Dyer, SIGGRAPH’96]

Morprgd View

Richard Szeliski Reflections on Image-Based Rendering
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Video view interpolation
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Interactive 3D video scenarios

e Sports events, e.g., CMU’s 30-camera “EyeVision” system at
SuperBowl| XXXV) and 2016

* Concert performances,
plays, circus acts

e Games

* |Instructional video,
e.g., golf, skating, martial arts

* Interactive (Internet) video

Richard Szeliski Reflections on Image-Based Rendering
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Plane Sweep Stereo

* Sweep family of planes through volume

<« projective re-sampling of (X.Y.2)

input imag

composite

virtual camera

« each plane defines an image = composite homography
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Plane Sweep Stereo

* For each depth plane
e compute composite (mosaic) image — mean

* compute error image — variance
» convert to confidence and aggregate spatially

 Select winning depth at each pixel

Richard Szeliski Reflections on Image-Based Rendering

15



Plane sweep stereo

* Re-order (pixel / disparity) evaluation loops

R L d{ \‘@ -

X

for every pixel, for every disparity
for every disparity for every pixel
compute cost compute cost
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Image-Based Rendering
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Computer Graphics

Richard Szeliski

Output

-

~

Image

“a
¢

Synthe&

Camera
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Computer Vision

Output

Richard Szeliski

y

/‘ Real Scene

\
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But, vision technology fails

Image \

Synthetic
Camera

Real Cameras
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..and so does graphics

Synthetic Real Scene

Camera

Real Cameras

Richard Szeliski Reflections on Image-Based Rendering
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Image-Based Rendering

Synthetic \ Real Scene

Camera

Images+Model

Real Cameras
_Or_
Expensive Image Synthesis

Richard Szeliski Reflections on Image-Based Rendering 22



Lumigraph / Light Field [1996]

Outside convex SM

Empty

4D




Lumigraph — Capture

* Convert images into a solid 3D model

* Render from images and model

Richard Szeliski Reflections on Image-Based Rendering 24



Lumigraph — Image Effects

Can model effects such as:
* parallax
* occlusion
* translucency
e refraction
* highlights
* reflections
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Unstructured Lumigraph

 What if the images aren’t sampled on
a regular 2D grid?

e Can still re-sample rays

e Ray weighting becomes more complex
[Heigl et al., DAGM’99]

e Unstructured Lumigraph [Buehler et al., SIGGRAPH’2000]
e Deep blending [Hedman et al., SG Asia 2018] e <
e FVS [Riegler & Koltun, ECCV’2020]

Deep Blending

-
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Surface Light Fields

* [Wood et al, SIGGRAPH 2000]

* Turn 4D parameterization around:
* image @ every surface pt.

* Leverage coherence:

e compress radiance fn
(BRDF * illumination)
after rotation by n




Surface Light Fields

* [Wood et al, SIGGRAPH 2000]

* Implicit Differentiable Renderer [Yariv et al., NeurlPS 2020]

Implicit Neural Representation Sample Network Neural Renderer Cq

mimivininivinln v

v

T=c+tv —
Vo vo

c+tv flet+to) ™= Vi) T, n i
I - i
H .

fle+tw)
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Environment Matting [2000]

Figure 1 Sample composite images constructed with the techniques of this
paper: slow but accurate on the left, and a more restricted example acquired at
video rates on the right.
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Layered Depth Image

25D7

Layered Depth Image

Richard Szeliski Reflections on Image-Based Rendering
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Layered Depth Image

* Rendering from LDI
[Shade et al., SIGGRAPH’98]

_
\

e Incremental in LDI X and Y
« Guaranteed to be in back-to-front order
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Sprites with Depth

* Represent scene as collection of cutouts with depth (planes +
parallax)

* Render back to front with fwd/inverse warping [Shade et al.,
SIGGRAPH’98]

e Basis of Virtual
Viewpoint Video
[Zitnick et al. 2004]

Richard Szeliski Reflections on Image-Based Rendering
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Multiplane images

\ / “stack of
acetates”

Synthesized image k

(a)

Virtual camera

Reference viewpoint v

. «. = NT

Layers at

, fixed depths,
each is an
RGBA image.

ﬂ Nowvel viewpoint

Figure 14.7  Finely sliced fronto-parallel layers: (a) stack of acetates (Szeliski and Golland
1999) (c) 1999 Springer and (b) multiplane images (Zhou, Tucker, Flynn et al. 2018) (c) 2018

ACM.
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Multiplane images

Input images Inferred MPI Representation
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Multi-sphere and layered meshes

Immersive Light Field Video with a Layered Mesh Representation

MICHAEL BROXTON", JOHN FLYNN*, RYAN OVERBECK", DANIEL ERICKSON", PETER HEDMAN,
MATTHEW DUVALL, JASON DOURGARIAN, JAY BUSCH, MATT WHALEN, and PAUL DEBEVEC, Google

(a) Capture Rig (b) Multi-Sphere Image (c) Layered Mesh Representation

[SIGGRAPH’2020]
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Virtual Viewpoint Video
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Virtual Viewpoint Video [SIGGRAPH 2004]

controlling

Richard Szeliski Reflections on Image-Based Rendering



Matting

Richard Szeliski

Background Surface

Some pixels Close up of real image:
getinfluence i —

for multiple Foreground Surface

surfaces. :

Image

Multiple colors and depths at
boundary pixels...

Camera

Reflections on Image-Based Rendering
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Find matting information:

1. Find boundary
strips using depth.

-" s |-—‘- o~ ’-—‘ ’

2. Within boundary strips compute the colors and depths of
the foreground and background object.

Background

I Foreground

Richard Szeliski Reflections on Image-Based Rendering
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Why matting is important

No Matting

Richard Szeliski Reflections on Image-Based Rendering

Matting
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Virtual Viewpoint Video

Two-layer model with
thin boundary strips

[Zitnick et al., SIGGRAPH’04]
Main Layer:  Boundary Layer:

Main
—

I
|
Boundary :

: Strip

r"\waﬁ"J
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Massive Arabesque




360° Video

Richard Szeliski
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360 Video

[Uyttendaele et al. 2004]

Ladybug (six-camera head)
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Acquisition platforms (today)

Richard Szeliski

o Rcsol.g!iin_)n
Borxrx FPax,
W AAA Grirx
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360 Video




360 Video

Richard Szeliski
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iZRolor | GoRe

3 eneno. MMM

Shop for vr 180 on Google Sponsored

Z CAM K1 Pro Lenovo Mirage Camera, Lucid LucidCam LucidCam - 180 Degree
Cinematic VR180... Consumer, VR 180,... Stereoscopic 3D Poin... 3D VR Camera
$2,995.00 $299.99 $499.99 $499.99

B&H Photo-Video-Audio B&H Photo-Video-Audio B&H Photo-Video-Audio Best Buy

Free shipping Free shipping vk o (4) %k o (4)

VR180 - Google VR

https://vr.google.com/vr180/ v

VR180 cameras capture photos and video in 3D, but can be viewed and shared in either 2D or 3D. AVR
headset, including even a Google Cardboard headset, ...

48







Google Jump [2015]

Richard Szeliski

LY o S

=Y
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Facebook Surround 360 [2016]

Cameras

Richard Szeliski Reflections on Image-Based Rendering

Wide Angle Lens
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Facebook Surround 360 [2017]

Facebook’s new Surround 360 video cameras let
you move around inside live-action scenes

The freedom of VR with the fidelity of real life

By Nick Statt | @nickstatt | Apr 19, 2017, 1:15pm EDT

Facebook today announced the second generation of its
Surround 360 video camera design, and this time the company

is serious about helping potential customers purchase it as an
actual product. The Surround 360, which Facebook unveiled

facebook
SURROUND 360

last year as an open-source spec guide for others to build off of,
has been upgraded as both a larger, more capable unit and a

smaller, more portable version.
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https://www.theverge.com/2017/4/19/15345738/facebook-surround-360-video-cameras-f8-conference-2017

An Integrated 6DoF Video Camera and System Design

ALBERT PARRA POZO, MICHAEL TOKSVIG, TERRY FILIBA SCHRAGER, and JOYCE HSU, Facebook Inc.
UDAY MATHUR, RED Digital Cinema
ALEXANDER SORKINE-HORNUNG, RICK SZELISKI, and BRIAN CABRAL, Facebook Inc.

Fig. 1. The commercial 16 camera system, an equirectangular depth map, and final color rendering produced from our system.

. SIGGRAPH Asia 2019
Video | sia 2019
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ParraPozo-SGA19.mp4

Hemispherical light field capture & playback

(@) Capture Rig (b) Multi-Sphere Image (c) Layered Mesh Representation

IMMERSIVE LIGHT FIELD VIDEO
WITH A LAYERED MESH REPRESENTATION

SIGGRAPH 2020 Technical Paper
Download PDF

Michael Broxton®, John Flynn*, Ryan Overbeck®, Daniel Erickson®,

Peter Hedman, Matthew DuVall, J]ason Dourgarian, Jay Busch, Matt Whalen,
Paul Debevec

Richard Szeliski Reflections on Image-Based Rendering
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Stereo from two 360 cameras

Low-Cost 360 Stereo Photography and Video Capture,
Matzen, Cohen, Evans, Kopf, Szeliski, SIGGRAPH 2017.
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Immersive Video Stabilization

Richard Szeliski Reflections on Image-Based Rendering



First-person Hyperlapse

Create buttery-smooth “fast forwards” from action videos

(a) Scene reconstruction (b) Proxy geometry

[Kopf, Cohen, Szeliski, SSIGGRAPH 2014]
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Proxg Qeometrg

(for a single uideo frame) ;!
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Large-Scale Reconstruction
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Photo Tourism

flickr

Home The Tour Sign Up Explore
SearCh Photos  Groups  People

|trevi rome

@ We found 13,146 photos matching trevi and rome.

View: Most relevant * Most recent * Most interesting

From langenberg

From batigolix

| e

AR

From Nastrina1981

Sign In  Help

Search

NEw Search by Camera

[ search [oiances Seorc

Show details

Trevi - Rome

Save money on your hotel
reservation in Rome.
www.asiarooms.com

Trevi Hotel Rome

Save on Trevi Hotel in Rome.
Instant confirmation with
discounted prices.
www.bookinhotels.com

Trevi Hotel in Rome

A1 Discount Hotels. No
booking fees. Great service.
Low rates.
www.A1-Discount-Hotels.com

Hotel Trevi Rome
Search over 120 travel sites.

Internet images

Richard Szeliski

[Snavely,

Computed 3D structure
Seitz, Szeliski, SIGGRAPH 2006]
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System overview

Scene

TCWITEZTH

reconstruction Skl:

G J

Photo Explorer

Relative camera positions and \ /

orientations

= ﬂ

Input photographs

Point cloud

Sparse correspondence
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Piecewise planar proxies

ﬂﬁ

:.‘ ,(i f 'l‘/
Ao ® i a
A s «® «
1
== g E = =
. , Reconstruct Lines
60 images Structure from motion

+
Detect Multiple Planes

[Sinha, Steedly, Szeliski ICCV’09]
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Piecewise planar depth-map
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Photo Tours - 2012

G EMEN s PONT MA X»
X A MR M
LA

Trevi Fountain

]

[Kushal et al., 3DIMPVT 2012]
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The Visual Turing Test - 2013

Fioure 5 Visnal Turine test Tn each imace nair the oround trith image i< on the left and onr resnlt is on the richt

[Shan et al., 3DV 2013]
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Color Depth Normal map - Geometry-aware Lighting
Reconstruction I 1 Fffects l

Casual 3D Photography

Peter Hedman, Suhib Alsisan, Richard Szeliski, Johannes Kopf
SIGGRAPH Asia 2017
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Casual 3D Photography

(a) Capture & (b) Sparse reconstruction (c) Dense reconstruction (d) Warping ' (e) Stitching (f) Two-layer fusion

pre-processing i?;"f%f :
. phnl SBR[ |
% Hov 'l Qﬁ.w . y. #—_—_’, ‘ y - _7}\\?&:\ ¢¢:‘1§~*
2 ¢ LGN | s d e 5

Near envelope «w | [T 4 “\ @ h JB ' - =2 '
v —1 v : !
Point cloud & N Depth maps N Partial panos (FG) FG depth & color

N camera poses

Stage output

- . \.\,_ . ) - 0
N Partial panos (BG) BG depth & color
I ==
u 2N e

(a) Capture and pre-processing, Sec. 4.1; (b) Sparse reconstruction, Sec. 4.2; (c) Dense reconstruction, Sec. 4.3; (d) Warping into
a central panorama, Sec. 4.4.1; (e) Parallax-tolerant Stitching, Sec. 4.4.2; (f) Two-layer fusion, Sec. 4.4.3.

Figure 2: A breakdown of the 3D photo reconstruction algorithm into its six stages, with corresponding inputs and outputs:

Richard Szeliski Reflections on Image-Based Rendering
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Casual 3D Photography

(a) Front color-and-depth panorama

Richard Szeliski Reflections on Image-Based Rendering

———y

(b) Front detail

(c) Back detail
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Casual 3D Photography

PikE PLACE

L 360° x 180° scenes captured with DSLR cameras

SoFA CAFE TroLL

L— Partial scenes captured with DSLR cameras — L

Gum WALL

GRAVITY KiTcHEN CLowNs
Partial scenes captured with cell phone cameras
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Instant 3D Photography

Peter Hedman Johannes Kopf
University College London ° Facebook

[
Pon'/7
(.T'.‘.":
[/
[
o
D
>
)
< 4
o
»

" This work was done while Peter was working as a contractor for Facebook.

Dual camera Input burst of 34 color-and-depth photos, Our 3D panorama (showing color, depth, and a 3D effect),
phone captured in 34.0 seconds generated in 34.7 seconds.

Our work enables practical and casual 3D capture with regular dual camera cell phones. Left: A burst of input color-and-depth image pairs that
we captured with a dual camera cell phone at a rate of one image per second. Right: 3D pancrama generated with our algorithm in about the
same time it took to capture. The geomeitry is highly detailed and enables viewing with hinocular and motion parallax in VR, as well as applying
3D effects that interact with the scene, e.qg., through occlusions (right).

Richard Szeliski Reflections on Image-Based Rendering
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http://visual.cs.ucl.ac.uk/pubs/instant3d/

Practical 3D Photography

Johannes Kopf Suhib Alsisan Francis Ge Yangming Chong Kevin Matzen
Ocean Quigley Josh Patterson Jossie Tirado Shu Wu Michael F. Cohen
Facebook

Practical 3D Photography

ﬁEQE Johannes Kopf, Suhib Alsisan, Francis Ge, Yangming Chong, Kevin Matzen, Ocean Quigley,
= Josh Patterson, Jossie Tirado, Shu Wu, Michael F. Cohen

CVPR Workshop on Computer Vision for Augmented and Virtual Reality, Long Beach, CA, 2019.
PDF

#spotlight, #demo

(a) Input (setup) (b) LDI (inpainted color / depth) ~ (d) Triangle Mesh (e) Novel view
(100 ms) (1100 ms) (100 ms) (30fps)
Figure 1. 3D Photo Creation. Runtime measured on iPhone X.
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3D Photos on Facebook

Estimate depth map from photo to create an interactive animation

506 O NOov4l
€ Create Post POST
Kevin Matzen
a | e——

What's on your mind?

Add to your post

Richard Szeliski Reflections on Image-Based Rendering
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3D Photos on Facebook

Estimate depth map from photo to create an interactive animation

5 | - - " PR SR OGP
E < . WP, e L F:
) R N \ : e RS
b =% S 5 :

-
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3D Photos blog post

Powered by Al: Turning
any 2D photo into 3D

using convolutional
neural nets

February 28, 2020 Kevin Matzen, Matthew Yu, Jonathan Lehman, Peizhao Zhang, Jan-Michael
Frahm, Peter Vajda, Johannes Kopf, Matt Uyttendaele

https://ai.facebook.com/blog/-powered-by-ai-turning-any-2d-photo-into-3d-using-convolutional-neural-nets/
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One Shot 3D Photography

JOHANNES KOPF, KEVIN MATZEN, SUHIB ALSISAN, OCEAN QUIGLEY, FRANCIS GE, YANGMING
CHONG, JOSH PATTERSON, JAN-MICHAEL FRAHM, SHU WU, MATTHEW YU, PEIZHAO ZHANG,

ZIJIAN HE, PETER VAJDA, AYUSH SARAF, and MICHAEL COHEN, Facebook

l‘x‘""!f i g L 7
S 38

® . (b) Depth estimation  (c) Layer generation  (d) Color inpainting (e) Meshing

I ut 3 . (230 ms) (94 ms) (540 ms) (234 ms) ‘ £) Novel vi
(a) Inpu l Processing: 1,098ms on a mobile phone (iPhone 11 Pro) | ( )(rez;ifﬁr::)ew

[SIGGRAPH 2020]
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3D Photography using Context-aware Layered Depth Inpainting
CVPR’2020




Google Photos cinematic effect

Jamie Aspinall

Product Manager, Google Photos

Published Dec 15, 2020
Relive the moment with Cinematic photos

Cinematic photos help you relive your memories in a way that feels more vivid and realistic—so
you feel like you're transported back to that moment. To do this, we use machine learning to
predict an image's depth and produce a 3D representation of the scene—even if the original
image doesn't include depth information from the camera. Then we animate a virtual camera for

a smooth panning effect—just like out of the movies.

https://blog.google/products/photos/new-cinematic-photos-and-more-ways-relive-your-memories/
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What's missing?

Richard Szeliski Reflections on Image-Based Rendering
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Reflections and Transparency
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Image-Based Rendering with Reflections

* Reflections, gloss, and highlights are everywhere

* How do these affect image-based modeling / rendering?
[Sinha et al., SIGGRAPH 2012]
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Standard IBR with Reflections

Reflections on Image-Based Rendering
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Our New Rendering System

Reflections on Image-Based Rendering
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Richard Szeliski
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Richard Szeliski

Our Result Standard i IBR
WO [Zayers == I@ncH¥ycr

Reflections on Image-Based Rendering
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Front Depth

Reflections on Image-Based Rendering

Rear Depth
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Front Lar

Reflections on Image-Based Rendering

Rear Layer
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Image-Based Rendering in the Gradient Domain

* Wrong depth for textureless or transparent areas

* Solve by reconstructing depth at gradients and re-integrating
[Kopf et al. SIGGRAPH Asia 2013]

Richard Szeliski Reflections on Image-Based Rendering
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Richard Szeliski

Preprocessing

Gradient domain
rendering

Reflections on Image-Based Rendering

91



Gradient Domain

Bithard Szeliski Reflections on Image-Based Rendering



Our Method

Standard IBRT " | “our IBR
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SIGGRAPH 2015

A Computational Approach for Obstruction-Free Photography

== 1 * RO SR o ] PO WA -~ Pk Wiz — e 0
rianfan Xue Michael Rubinstein< Ce Liu< william T. Freeman!2

TMIT CSAIL 2Google Research

* Part of this work was done while Michael Rubinstein and Ce Liu were at Microsoft Research, and when Tianfan Xue was an intern at Microsoft Research New England

Background

Reflective
layer

S

Background ()cchm(‘m

(a) Captured images (moving camera) (b) Output decomposition (our results)

Richard Szeliski Reflections on Image-Based Rendering
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Video Reflection Removal Through Spatio-Temporal Optimization

Ajay Nandoriya®!, Mohamed Elgharib*', Changil Kim?, Mohamed Hefeeda®, and Wojciech Matusik?
IQatar Computing Research Institute, HBKU MIT CSAIL 3Simon Fraser University

A0™

Input sequence Motion clustering Motion field l

Background video
. stabilization
"‘;h ‘ g & - . = -
‘ % - |9

Iterative loop

Motlon refinement

Initial video separation

Separation refinement (Eq. 2) background

[ICCV 2017]
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Reflection Removal Using a Dual-Pixel Sensor

Abhijith Punnappurath Michael S. Brown
York University York University
pabhijith@eecs.yorku.ca mbrown@eecs.yorku.ca

|mailto:pabhijith@eecs.yorku.cal

Abstract

Reflection removal is the challenging problem of remov-
ing unwanted reflections that occur when imaging a scene

A

that is behind a pane of glass. In this paper, we show
that most cameras have an overlooked mechanism that can Capturedinput image
greatly simplify this task. Specifically, modern DLSR and
smartphone cameras use dual pixel (DP) sensors that have
two photodiodes per pixel to provide two sub-aperture views
of the scene from a single captured image. “Defocus-
disparity” cues, which are natural by-products of the DP
sensor encoded within these two sub-aperture views, can be -

used to distinguish between image gradients belonging to E“"”;;‘;‘?et;?cr'n‘gag’”"d
the in-focus background and those caused by reflection in- based on L/R

\A:vie_w‘

Laft view

0 5 10 15 20
Relative horizontal position (pixels

defocus-disparity cues L/R disparity for background L/R disparity for reflection

terference. This gradient information can then be incorpo-
rated into an optimization framework to recover the back-
ground layer with higher accuracy than currently possible
from the single captured image. As part of this work, we S e
provide the first image dataset for reflection removal con-
sisting of the sub-aperture views from the DP sensor.

Ground truth Qur estimated Qur estimated
background layer background layer reflection layer

[CVPR 2019]
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Open Issues

* Improve stereo matching
* Plane + parallax representation

* Reflectivity (B) estimation
* [terative Refinement

e Handle distorted reflections
* [ See next slide |

* Model real-valued reflectivity
* Fresnel reflection
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Richard Szeliski

This ICCV2013 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

Bastien Jacquet®, Christian Hine!,

ETH Ziirich!
Ziirich, Switzerland

Abstract

Although specular objects have gained interest in recent
vears, virtually no approaches exist for markerless recon-
struction of reflective scenes in the wild. In this work, we
present a practical approach to capturing normal maps in
real-world scenes using video only. We focus on nearly pla-
nar surfaces such as windows, facades from glass or metal,
or frames, screens and other indoor objects and show how
normal maps of these can be obtained without the use of an
artificial calibration object. Rather, we track the reflections

n-f l‘/)/,l \A.‘f\l"’/" ("f'll‘n;ﬁl‘lf l'.lr’lﬂ(‘ \‘.‘L‘I;II) n1n\y;nn |.4V;fI‘l 1 l‘lﬂl"l/‘l I’ll)l/"

Kevin Koser!?*, Marc Pollefeys!

GEOMAR Helmholtz Centre for Ocean Research?
Kiel, Germany

Figure 1. Real-world glass reflection. Notice that reflection in dif-
ferent windows on the same facade can appear very different due to
minor deformations and normal variations. Our goal is to capture
normal maps of real windows to faithfully reproduce this effect.
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Neural Rendering
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09:00-09:15

09:15-09:30

Neural Rendering

CVPR 2020 tutorial.

Welcome and Introduction

Fundamentals, Taxonomy, Neural Rendering

Semantic Photo Synthesis and Manipulation

09:30-09:40

09:40-10:00

Overview

Semantic Image Synthesis with Spatially-Adaptive Normalization

Facial Reenactment & Body Reenactment

10:25-10:35

10:35-11:00

11:00-1:20

Overview

Neural Rendering for High-Quality Synthesis of Human Portrait Video and
Images

Neural Rendering for Virtual Avatars

Richard Szeliski

Michael Zollhofer

Ayush Tewari

Jun-Yan Zhu

Taesung Park

Justus Thies
Christian Theobalt

Aliaksandra
Shysheya

Novel View Synthesis

11:20-1:35
11:30-11:50
11:50-12:10

Overview
Neural Rerendering in the Wild

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Learning to Relight

13:20-13:30
13:30-13:50
13:50-14:10
Free Viewpoint
14:10-14:20
14:20-14:40

14:40-15:00

15:30-15:45

15:45-16:15

Overview
Multi-view Relighting Using a Ceometry-Aware Network
Neural Inverse Rendering
Videos
Overview
Neural Rendering for Performance Capture

Neural Volumes: Learning Dynamic Renderable Volumes from Images

Social Implications, Open Challenges, Conclusion

Followup Discussion
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Vincent Sitzmann
Moustafa Meshry

Ben Mildenhall

Zexiang Xu
Julien Philip

Abhimitra Meka
Sean Fanello
Rohit K. Pandey

Stephen Lombardi

Ohad Fried
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3D representations for neural rendering

e 3D models & textures e \Voxels

Novel view 4(2) Deep Blending

> A s
A i B
(3) Real surface Reco:smtion (b)
Multiview Capture (Section 8) Encoder + Decoder (Section 4+5) Ray Marching (Section 6)
* Depth images and layers  Implicit functions (MLPs)
D" DeepMPI a RGBa MPI ] "Rendered view 5D Input Output Volume
] Position + Direction Color + Density Rendering
r» (x,y,z,G,qi)—»l]l]I]—»(RGBo)
g, of'zf),'" F@ Ry 9 Ray 1/ ‘

h =40 Ray 2 ]

I s Real Exemplar (I)g Deep buffer

a Hw IBZ‘ =
| (b) Planar proxies
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SynSin: view synthesis from a single image

SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles'*  Georgia Gkioxari>  Richard Szeliski®  Justin Johnson?#

"University of Oxford 2Facebook AI Research 3*Facebook #University of Michigan

1l 4

Input Image  Leaned 3D point cloud Generated views along the trajectory
with trajectory overlaid

Input Image Learned 3D point cloud Generated views along the trajectory
with trajectory overlaid

Figure 1: End-to-end view synthesis. Given a single RGB image (red), SynSin generates images of the scene at new
viewpoints (blue). SynSin predicts a 3D point cloud, which is projected onto new views using our differentiable renderer; the
rendered point cloud is passed to a GAN to synthesise the output image. SynSin is trained end-to-end, without 3D supervision.
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SynSin: view synthesis from a single image

.............. v

Losses
l
=l T

Figure 2: Our end-to-end system. The system takes as input an image / of a scene and change in pose T. The spatial
feature predictor (f) learns a set of features F' (visualised by projecting features using PCA to RGB) and the depth regressor
(d) a depth map D. F' are projected into 3D (the diagram shows RGB for clarity) to give a point cloud P of features. P is
transformed according to T and rendered. The rendered features F' are passed through the refinement network (g) to generate
the final image I;. I should match the target image, which we enforce using a set of discriminators and photometric losses.

lnput Image I
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SynSin: view synthesis from a single image

Wcoct bodian then
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Animating Pictures

Animating Pictures with Eulerian Motion Fields

Aleksander Holynskﬂ, Brian Curless1, Steven M. Seitz1, Richard Szeliski?
University of Washington, 2Facebook

B Paper | um arxiv | @ Video RNG)iCode(comingsoon)

(a) Input image : (b) Output looping video

https://eulerian.cs.washington.edu/

Richard Szeliski Reflections on Image-Based Rendering

111


https://eulerian.cs.washington.edu/

Animating Pictures

Input image

Motion Estimation (Section 4)

—>

Motion Synthesis

Animation (Section 5)

\<’>/

M

->-

P Ty

Euler
Integration

Motion field

Encoder

Deep features

Displacement fields

.
>

iz

t_ﬂ

FO—)t

;

Symmetric
splatting

1

Decoder

R

Outpt frame

Figure 2: Overview: Given an input image /o, our motion estimation network predicts a motion field M. Through Euler integration, M
is used to generate future and past displacement fields Fy—; and F—— N , which define the source pixel locations in all other frames .
To animate the input image using our estimated motion, we first use a feature encoder network to encode the image as a feature map Dy.
This feature map is warped by the displacement fields (using a novel symmetric splatting technique) to produce the corresponding warped
feature map D;. The warped features are provided to the decoder network to create the output video frame /.

Richard Szeliski
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Animating Pictures

& This video has audio &

Animating Pictures
with Eulerian Motion Fields

Aleksander Holynski Brian Curless Steven M. Seitz Richard Szeliski
University of Washington University of Washington University of Washington Facebook




Animating Pictures

M

N Euler

Motion Synthesis :
Integration

IO ‘# Motion field

e R R |

r Symmetric
splatting

Displacement fields

»gﬁgar

Warped deep features

Input image

—p Encoder

Deep features

Figure 2: Overview: Given an input image /,, our motion estimation network predicts a motion field
and Fo—,

1otion, we first use a feature encoder network to encoc

is used to generate future and past displacement fields £ , Which define the source pi

f
To animate the input image using our estimated n
1

T'his feature map is warped by the displacement fields (using a novel symmetric splatting technique) to |

feature map D:. The warped features are provided to the decoder network to create the output video frai

Richard Szeliski
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W Loss
Motmn M (AR RRARRRRRRRRRRRRRIERRIEN] W @
Synthesis
Motion field In t:;rlael:ion Real motion field Real middle frame
GT _l I_‘ l_ - 5
I"@ Encoder l =8
Hjun =]
Real first frame Symmetric |Deco der
@F [ [] splatting =
Encoder Ward deep features Output frame
HjuIn

Deep features

Real last frame

Figure 5: Training: As described in Section 5.1, each frame in our
generated looping video is composed of textures from two warped
frames. To supervise this process during training, i.e., to have a
real frame to compare against, we perform our symmetric splatting
using the features from two different frames, /o and I (instead of
Iy twice, as in inference). We enforce the motion field M to match

Falsal
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... Wrapping up ...
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Outline

* Multi-view stereo

* Image-Based Rendering
* Lumigraphs, Light Fields, Sprites with Depth, and Layers

* Virtual Viewpoint Video
 360° and 3D Video
* 3D Photos

* Reflections and transparency

(a) Input image (b) Output looping video

* Neural rendering
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L

Computer Vision

Algorithms and Applications
Second Edition

Thank you
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