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Computer vision deals with inverse problems

Projection of the 3D world onto the 2D image plane

Determine unknown model parameters based on observed data
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Computer vision is highly ambiguous

What you see ...
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Computer vision is highly ambiguous

What you see ... is maybe not what it is!

[Fukuda’s Underground Piano Illusion]
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Energy minimization methods

It is in general not possible to solve inverse problems directly
Add some smoothness assumption to the unknown solution
Leads to the energy minimization approach

min
u
{E(u) = R(u) +D(u, f )} ,

where f is the input data and u is the unknown solution
Energy functional is designed such that low-energy states reflect the physical
properties of the problem
Minimizer provides the best (in the sense of the model) solution to the problem

Different philosophies:
Discrete MRF setting: Images are represented as graphs G(V, E), consisting of a node
set V, and an edge set E. Each node v ∈ V can take a label from a discrete label set
U ⊂ Z, i.e. u(v) ∈ U
Continuous Variational setting: Images are considered as continuous functions
u : Ω→ R, where Ω ⊂ Rn is the image domain.

Link to statistics: In a Bayesian setting, the energy relates to the posterior
probability via

p(u|f ) =
1

Z
exp(−E(u))

Computing the minimizer of E(u) is equivalent to MAP estimation on p(u|f )
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Example: Total variation based image restoration

Image model: f = k ∗ u + n, blur kernel k =
Variational model: [Rudin, Osher, Fatemi ’92]

min
u

∫
Ω
|Du|+

λ

2
‖k ∗ u − f ‖2

2

(a) Degraded image f

(b) Reconstructed image u
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Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a n-dimensional
real-valued vector, and S is a subset of Rn

How to solve this problem?

Naive: “Download a commercial package ...”

Reality: “Finding a solution is far from being trivial!”

Example: Minimize a function of 10 variables over the unit box

Can take more than 30 million years to find an approximate solution!

“Optimization problems are unsolvable”

[Nesterov ’04]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 / 40



tugraz
Graz University of Technology

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a n-dimensional
real-valued vector, and S is a subset of Rn

How to solve this problem?

Naive: “Download a commercial package ...”

Reality: “Finding a solution is far from being trivial!”

Example: Minimize a function of 10 variables over the unit box

Can take more than 30 million years to find an approximate solution!

“Optimization problems are unsolvable”

[Nesterov ’04]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 / 40



tugraz
Graz University of Technology

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a n-dimensional
real-valued vector, and S is a subset of Rn

How to solve this problem?

Naive: “Download a commercial package ...”

Reality: “Finding a solution is far from being trivial!”

Example: Minimize a function of 10 variables over the unit box

Can take more than 30 million years to find an approximate solution!

“Optimization problems are unsolvable”

[Nesterov ’04]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 / 40



tugraz
Graz University of Technology

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a n-dimensional
real-valued vector, and S is a subset of Rn

How to solve this problem?

Naive: “Download a commercial package ...”

Reality: “Finding a solution is far from being trivial!”

Example: Minimize a function of 10 variables over the unit box

Can take more than 30 million years to find an approximate solution!

“Optimization problems are unsolvable”

[Nesterov ’04]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 / 40



tugraz
Graz University of Technology

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ S ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a n-dimensional
real-valued vector, and S is a subset of Rn

How to solve this problem?

Naive: “Download a commercial package ...”

Reality: “Finding a solution is far from being trivial!”

Example: Minimize a function of 10 variables over the unit box

Can take more than 30 million years to find an approximate solution!

“Optimization problems are unsolvable”

[Nesterov ’04]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 / 40



tugraz
Graz University of Technology

Convex versus non-convex

Non-convex problems
Often give more accurate models
In general no chance to find the global minimizer
Result strongly depends on the initialization
Dilemma: Wrong model or wrong algorithm?

Convex problems
Convex models often inferior
Any local minimizer is a global minimizer
Result is independent of the initialization
Note: Convex does not mean easy!

Current research: Bridging the gap between convex and non-convex optimization
Convex approximations of non-convex models
New models
Algorithms
Bounds
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Literatur on convex analysis and optimization

Convex optimization, [Boyd,Vandenberghe ’04]

Introductory lectures on convex optimization, [Nesterov ’04]

Nonlinear programming, [Bertsekas ’99]

Variational analysis, [Rockafellar, Wets ’88]
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Convex sets

Consider two points x1, x2 ∈ Rn

The line segment between these two points is given by the points

x = θx1 + (1− θ)x2, θ ∈ [0, 1]

A set C is said to be convex, if it contains all line segments between any two
points in the set

x1, x2 ∈ C ⇒ θx1 + (1− θ)x2 ∈ C , ∀θ ∈ [0, 1]
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Convex combination and convex hull

Convex combination of a set of points {x1, ..., xk}, xi ∈ Rn is given by

x =
k∑

i=1

θixi , θi ≥ 0,
k∑

i=1

θi = 1

The convex hull of a set of points {x1, ..., xk} is the set of all convex combinations
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A few important convex sets

Hyperplane: {x | aT x = b}

Halfspace: {x | aT x ≤ b}

Polyhedra: Interesection of finitely many hyperplanes and halfspaces
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A few important convex sets

Norm Ball: {x | ‖x − xc‖ ≤ r}, where ‖·‖ is any norm

Ellipsoid: {x | (x − xc )P−1(x − xc ) ≤ 1}, P symmetric and positive definite

Norm cone: {(x , t) | ‖x‖ ≤ t}
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How to show convexity of a set?

Check definition

x1, x2 ∈ C ⇒ θx1 + (1− θ)x2 ∈ C , ∀θ ∈ [0, 1]

Show that the set is obtained from simple sets by operations that preserve
convexity

Intersection
Affine transformation (scaling, translation, ...)
...

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Convex functions

Definition: A function f : Rn → R is convex, if dom f is a convex set and

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), ∀x , y ∈ dom f , θ ∈ [0, 1]

f is said to be concave, if −f is convex

f is strictly convex, if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y), ∀x , y ∈ dom f , x 6= y , θ ∈ (0, 1)

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Examples of convex functions

Examples on R
Linear: ax + b, a, b ∈ R
Exponential: eax , a ∈ R

Powers: xα, for x ≥ 0, α ≥ 1 or α ≤ 0

Powers of absolute values: |x |α, α ≥ 0

Negative entropy: x log x , for x ≥ 0

Examples on Rn

Affine: aT x + b, a, b ∈ Rn

Norms: ‖x‖p =
(∑n

i=1 |xi |p
) 1

p , p ≥ 1

Examples on Rm×n

Affine: tr(ATX ) + b =
∑m

i=1

∑n
j=1 AijXij + b, A ∈ Rm×n, b ∈ R

Spectral norm (max non-singular value): ‖X‖2

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Sufficient conditions of convexity

First-order condition: A differentiable function f with convex domain is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y ∈ dom f

Second-order condition: A twice differentiable function f with convex domain is
convex iff

∇2f (x) � 0, ∀x ∈ dom f

It is strictly convex if the assertion becomes ∇2f (x) � 0

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Example

Quadratic over linear function

f (x , y) =
x2

y

Computing the gradient and Hessian

∇f (x , y) = (
2x

y
,−

x2

y2
), ∇2f (x , y) =

2

y3
(y ,−x)T (y ,−x)

Second-order sufficient condition: ∇2f (x , y) � 0 for y ≥ 0

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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How to verify convexity?

Verify the definition of convex functions

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), ∀x , y ∈ dom f , θ ∈ [0, 1]

Sometimes simpler to consider the 1D case

Check for ∇2f � 0

∇2f � 0 iff vT (∇2f )v ≥ 0, ∀v 6= 0

Show that f is obtained from simple convex functions by operations that preserve
convexity

Non-negative weihgted sum: f =
∑

i fi , is convex if αi > 0, fi are convex

Composition with an affine function: f (aT x + b) is convex if f is convex
Pointwise maximum: f (x) = max{f1(x), ..., fn(x)} is convex if f1...fn are convex

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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The convex conjugate

The convex conjugate f ∗(y) of a function f (x) is defined as

f ∗(y) = sup
x∈dom f

〈x , y〉 − f (x)

f ∗(y) is a convx function (pointwise supremum over linear functions)

The biconjugate function f ∗∗(x) is the largest convex l.s.c. function below f (x)

If f (x) is a convex, l.s.c. function, f ∗∗(x) = f (x)

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Examples

f (x) = |x |:

f ∗(y) = sup
x
〈x , y〉 − |x | =

{
0 if |y | ≤ 1
∞ else

f (x) = 1
2
xTQx , Q, posoitive definite

f ∗(y) = sup
x
〈x , y〉 −

1

2
xTQx =

1

2
yTQ−1y

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Duality

Fenchel’s duality theorem
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Convex optimization

A general convex optimization problem is defined as

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

Ax = b

where f0(x)...fp(x) are real-valued convex functions, x = (x1, ...xn)T ∈ Rn is a
m-dimensional real-valued vector, Ax = b are affine equality constraints

Convex optimization problems are considered as solvable!

“The great watershed in optimization isn’t between linearity and non-linearity,
but convexity and non-convexity” [Rockafellar ’93]
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Black box convex optimization

Generic iterative algorithm for convex optimization:

1 Pick any initial vector x0 ∈ Rn, set k = 0

2 Compute search direction dk ∈ Rn

3 Choose step size τk such that f (xk + τkdk ) < f (xk )

4 Set xk+1 = xk + τkdk , k = k + 1

5 Stop if converged, else goto 2

Different methods to determine the search direction dk

steepest descend

conjugate gradients

Newton, quasi-Newton

Working-horse for the lazy: Limited memory BFGS quasi-Newton method
[Nocedal ’80]

Black box methods do not exploit the structure of the problem and hence are often
less effective
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Structured convex optimization

There are a number of efficient solvers available for important types of structured
convex optimization problems [Boyd, Vandenberghe ’04]:

Least squares problems:
min
x
‖Ax − b‖2

2

Quadratic program (QP) and linear program (LP) (Q = 0):

min 1
2
xTQx + cT x , Q � 0

s.t. Ax = b, l ≤ x ≤ u

Second order cone program (SOCP)

min f T x
s.t. ‖Aix + bi‖2 ≤ cTi x + di , i = 1...m, Fx = g

Many problems can be formulated in these frameworks

Fast methods available (simplex, interior point, ...)

Sometimes ineffective for large-scale problems
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Overview

1 Introduction

2 Basics of convex analysis

3 Convex optimization

4 A class of convex problems
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A class of problems

Let us consider the following class of structured convex optimization problems

min
x∈X

F (Kx) + G(x) ,

K : X → Y is a linear and continuous operator from a Hilbert space X to a
Hilbert space Y .

F : Y → R ∪ {∞}, G : X → R ∪ {∞} are “simple” convex, proper, l.s.c.
functions, and hence have an easy to compute prox operator:

proxG (z) = (I + ∂G)−1(z) = arg min
x

‖x − z‖2

2
+ G(x)

It turns out that many standard problems can be cast in this framework.

There exists a vast literature of numerical algorithms to solve this class of
problems
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Examples

Image restoration: The ROF model

min
u
‖∇u‖1 +

λ

2
‖k ∗ u − f ‖2

2 ,

Compressed sensing: Basis pursuit problem (LASSO)

min
x
‖x‖1 +

λ

2
‖Ax − b‖2

2

Machine learning: Linear support vector machine

min
w,b

λ

2
‖w‖2

2 +
n∑

i=1

max (0, 1− yi (〈w , xi 〉 + b))

General linear programming problems

min
x
〈c, x〉 , s.t.

{
Ax = b
x ≥ 0
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Primal, dual, primal-dual

The real power of convex optimization comes through duality

Recall the convex conjugate:

F∗(y) = sup
x∈X
〈x , y〉 − F (x) , F∗∗(x) = sup

y∈Y
〈x , y〉 − F∗(y)

If F (x) convex, l.s.c. than F∗∗(x) = F (x)

min
x∈X

F (Kx) + G(x) (Primal)

min
x∈X

max
y∈Y
〈Kx , y〉+ G(x)− F∗(y) (Primal-Dual)

max
y∈Y
− (F∗(y) + G∗(−K∗y)) (Dual)

Allows to compute the duality gap, which is a measure of optimality
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Optimality conditions

We focus on the primal-dual formulation:

min
x∈X

max
y∈Y
〈Kx , y〉+ G(x)− F∗(y)

We assume, there exists a saddle-point (x̂ , ŷ) ∈ X × Y which satisfies the
Euler-Lagrange equations {

Kx̂ − ∂F∗(ŷ) 3 0

K∗ŷ + ∂G(x̂) 3 0
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Standard first order approaches

1. Classical Arrow-Hurwicz method [Arrow, Hurwicz, Uzawa ’58]{
yn+1 = (I + τ∂F∗)−1(yn + τKxn)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

Alternating forward-backward step in the dual variable and the primal variable

Convergence under quite restrictive assumptions on τ

For some problems very fast, e.g. ROF problem using adaptive time steps [Zhu,
Chan, ’08]

2. Proximal point method [Martinet ’70], [Rockafellar ’76] for the search of zeros of
an operator, i.e. 0 ∈ T (x)

xn+1 = (I + τnT )−1(xn)

Very simple iteration

In our framework T (x) = K∗∂F (Kx) + ∂G(x)

Unfortunately, in most interesting cases, (I + τnT )−1 is hard to evaluate

Hence, the practical interest is limited

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

34 / 40



tugraz
Graz University of Technology

Standard first order approaches
3. Douglas-Rachford splitting (DRS) [Mercier, Lions ’79]

Special case of the proximal point method if the operator T is the sum of two
operators, i.e. T = A + B{

wn+1 = (I + τA)−1(2xn − wn) + wn − xn

xn+1 = (I + τB)−1(wn+1)

Only needs to evaluate the resolvent operator with respect to A and B

Let A = K∗∂F (K) and B = ∂G , the DRS algorithm becomes
wn+1 = arg min

v
F (Kv) +

1

2τ
‖v − (2xn − wn)‖2 + wn − xn

xn+1 = arg min
x

G(x) +
1

2τ

∥∥x − wn+1
∥∥2

Equivalent to the alternating direction method of multipliers (ADMM) [Eckstein,
Bertsekas ’89]

Equivalent to the split-Bregman iteration [Goldstein, Osher ’09]

Equivalent to an alternating minimization on the augmented Lagrangian
formulation
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A simple primal-dual algorithm

Proposed in a series of papers: [Pock, Cremers, Bischof, Chambolle, ’09], [Chambolle,
Pock, ’10], [Pock, Chambolle, ’11]

Initialization: Choose s.p.d. T, Σ, θ ∈ [0, 1], (x0, y0) ∈ X × Y .

Iterations (n ≥ 0): Update xn, yn as follows:{
xn+1 = (I + T∂G)−1(xn − TK∗yn)

yn+1 = (I + Σ∂F∗)−1(yn + ΣK(xn+1 + θ(xn+1 − xn)))

Alternates gradient descend in x and gradient ascend in y

Linear extrapolation of iterates of x in the y step

T, Σ can be seen as preconditioning matrices

Can be derived from a pre-conditioned DRS splitting algorithm

Can be seen as a relaxed Arrow-Hurwicz scheme
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Relations to the proximal-point algorithm

The iterations of PD can be written as the variational inequality
[He,Yuan ’10]〈(

x − xn+1

y − yn+1

)
,

(
∂G(xn+1) + K∗yn+1

∂F∗(yn+1)− Kxn+1

)
+ M

(
xn+1 − xn

yn+1 − yn

)〉
≥ 0 ,

M =

[
T−1 −K∗
−θK Σ−1

]

This is exactly the proximal-point algorithm, but with a norm in M.

Convergence is ensured if M is symmetric and positive definite

This is the case if θ = 1 and the assertion ‖Σ
1
2 KT

1
2 ‖2 < 1 is fulfilled.
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A family of diagonal preconditioners

It is important to choose T, Σ such that the prox-operators are still easy to
compute

Restrict the preconditioning matrices to diagonal matrices

It turns out that: Let K ∈ Rm×n, T = diag(τ ) and Σ = diag(σ) such that

τj =
1∑m

i=1 |Ki,j |2−α
, σi =

1∑n
j=1 |Ki,j |α

then for any α ∈ [0, 2]

‖Σ
1
2 KT

1
2 ‖2 ≤ 1 .

Gives an automatic problem-dependent choice of the primal and dual steps

Allows to apply the algorithm in a plug-and-play fashion

For α = 0, equivalent to the alternating step method [Eckstein, Bertsekas, ’90]

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

38 / 40



tugraz
Graz University of Technology

Convergence rates

The algorithm gives different convergence rates on different problem classes
[Chambolle, Pock, ’10]

F∗ and G nonsmooth: O(1/N)

F∗ or G uniformly convex: O(1/N2)

F∗ and G uniformly convex: O(ωN), ω < 1

Coincides with so far best known rates of first-order methods
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Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

One simple processor for each unknown

Each processor has a small amount of local memory

According to the structure of K , each processor can inter-change data with its
neighboring processors

Recent GPUs already go into this direction

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

40 / 40



tugraz
Graz University of Technology

Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

One simple processor for each unknown

Each processor has a small amount of local memory

According to the structure of K , each processor can inter-change data with its
neighboring processors

Recent GPUs already go into this direction

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

40 / 40



tugraz
Graz University of Technology

Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

One simple processor for each unknown

Each processor has a small amount of local memory

According to the structure of K , each processor can inter-change data with its
neighboring processors

Recent GPUs already go into this direction

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

40 / 40


	Introduction
	

	Basics of convex analysis
	

	Convex optimization
	

	A class of convex problems
	


