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m Projection of the 3D world onto the 2D image plane
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m Determine unknown model parameters based on observed data
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Computer vision is highly ambiguous

What you see ...
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Computer vision is highly ambiguous

What you see ... is maybe not what it is!

[Fukuda's Underground Piano lllusion]
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Energy minimization methods

It is in general not possible to solve inverse problems directly
Add some smoothness assumption to the unknown solution
m Leads to the energy minimization approach

muin {E(v) = R(u) +D(u, )},

where f is the input data and u is the unknown solution

m Energy functional is designed such that low-energy states reflect the physical
properties of the problem

= Minimizer provides the best (in the sense of the model) solution to the problem
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m Leads to the energy minimization approach

min {E(u) = R(u) +D(u, )},

where f is the input data and u is the unknown solution

m Energy functional is designed such that low-energy states reflect the physical
properties of the problem

= Minimizer provides the best (in the sense of the model) solution to the problem

m Different philosophies:

m Discrete MRF setting: Images are represented as graphs G(V, £), consisting of a node
set V, and an edge set £. Each node v € V can take a label from a discrete label set
UCZ e ulv)eU

m Continuous Variational setting: Images are considered as continuous functions
u:Q — R, where Q C R” is the image domain.
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m Energy functional is designed such that low-energy states reflect the physical
properties of the problem

= Minimizer provides the best (in the sense of the model) solution to the problem

m Different philosophies:

m Discrete MRF setting: Images are represented as graphs G(V, £), consisting of a node
set V, and an edge set £. Each node v € V can take a label from a discrete label set
UCZ e ulv)eU

m Continuous Variational setting: Images are considered as continuous functions
u:Q — R, where Q C R” is the image domain.

m Link to statistics: In a Bayesian setting, the energy relates to the posterior
probability via

p(ulf) = S exp(—E(u)

m Computing the minimizer of E(u) is equivalent to MAP estimation on p(u|f)
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Example: Total variation based image restoration

Image model: f = k x u+ n, blur kernel k = n
Variational model: [Rudin, Osher, Fatemi '92]

A
i Du| + Z ||k * u — |3
min [ 10|+ 3k + u = £13

(a) Degraded image f
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Image model: f = k x u+ n, blur kernel k = n
Variational model: [Rudin, Osher, Fatemi '92]

A
i Du| + Z ||k * u — |3
min [ 10|+ 3k + u = £13

(a) Degraded image f (b) Reconstructed image u
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Optimization problems are unsolvable

Consider the following general mathematical optimization problem:
min fo(x)
st. fi(x) <0, i=1...m
xeSsS,

where fy(x)...fm(x) are real-valued functions, x = (x1,...x,)T € R" is a n-dimensional
real-valued vector, and S is a subset of R"

How to solve this problem?

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 /40




Y 7= TUT - B

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min fo(x)
st. fi(x)<0, i=1...m
xeSsS,

where fy(x)...fm(x) are real-valued functions, x = (x1,...x,)T € R" is a n-dimensional
real-valued vector, and S is a subset of R"

How to solve this problem?

m Naive: “Download a commercial package ..."

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 /40




Y 7= TUT - B

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min fo(x)
st. fi(x)<0, i=1...m
xeSsS,

where fy(x)...fm(x) are real-valued functions, x = (x1,...x,)T € R" is a n-dimensional
real-valued vector, and S is a subset of R"

How to solve this problem?
m Naive: “Download a commercial package ..."

m Reality: “Finding a solution is far from being triviall”

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

8 /40




Y 7= TUT - B

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min fo(x)
st. fi(x)<0, i=1...m
xeSsS,

where fy(x)...fm(x) are real-valued functions, x = (x1,...x,)T € R" is a n-dimensional
real-valued vector, and S is a subset of R”

How to solve this problem?
m Naive: “Download a commercial package ..."

m Reality: “Finding a solution is far from being triviall”

m Example: Minimize a function of 10 variables over the unit box

m Can take more than 30 million years to find an approximate solution!

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
8 /40




Y 7= TUT - B

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

min fo(x)
st. fi(x)<0, i=1...m
xeSsS,

where fy(x)...fm(x) are real-valued functions, x = (x1,...x,)T € R" is a n-dimensional
real-valued vector, and S is a subset of R”

How to solve this problem?
m Naive: “Download a commercial package ..."

m Reality: “Finding a solution is far from being triviall”

m Example: Minimize a function of 10 variables over the unit box

m Can take more than 30 million years to find an approximate solution!

m “Optimization problems are unsolvable”
[Nesterov '04]
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Convex versus non-convex

m Non-convex problems
m Often give more accurate models
m In general no chance to find the global minimizer
m Result strongly depends on the initialization
m Dilemma: Wrong model or wrong algorithm?
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m Non-convex problems
m Often give more accurate models
m In general no chance to find the global minimizer
m Result strongly depends on the initialization
m Dilemma: Wrong model or wrong algorithm?

m Convex problems
m Convex models often inferior
m Any local minimizer is a global minimizer
m Result is independent of the initialization
m Note: Convex does not mean easy!

m Current research: Bridging the gap between convex and non-convex optimization

m Convex approximations of non-convex models
= New models

m Algorithms

m Bounds
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Literatur on convex analysis and optimization

m Convex optimization, [Boyd,Vandenberghe '04]

= Introductory lectures on convex optimization, [Nesterov '04]

m Nonlinear programming, [Bertsekas '99]

| |
1=

m Variational analysis, [Rockafellar, Wets '88]
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Convex sets

m Consider two points x;, x € R”
m The line segment between these two points is given by the points

x=0x1+ (1 —0)x, 0 €0,1]

&
0=1
0=0.6
T2
0=0
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Convex sets

m Consider two points x;, x € R”
m The line segment between these two points is given by the points

x=0x1+ (1 —0)x, 0 €0,1]

m A set C is said to be convex, if it contains all line segments between any two
points in the set

x1, X0 € C = 9X1+(179)X2€ C, V@G[O,l]

]
L
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m Convex combination of a set of points {xi, ..., Xk}, x; € R" is given by

k k
x=> 0ix;, 0; >0, > 0;=1
i=1 i=1

m The convex hull of a set of points {xi, ..., xx} is the set of all convex combinations

Convex Optimization for Computer Vision
13 /40
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A few important convex sets

m Hyperplane: {x | a”x = b}
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A few important convex sets

m Hyperplane: {x | a”x = b}

a'x=>b
m Halfspace: {x|a’x < b}

\\\\ /a
~/ T

“ axz>b
Zo \\\

-
oz <b -
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A few important convex sets

= Norm Ball: {x | ||[x — xc|| < r}, where ||-|| is any norm

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
15 /40




Wi & TUT - B

A few important convex sets

= Norm Ball: {x | ||[x — xc|| < r}, where ||-|| is any norm

m Ellipsoid: {x | (x — xc)P~}(x — xc) < 1}, P symmetric and positive definite
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How to show convexity of a set?

m Check definition

x1, xo € C = 9X1+(1—9)X2€ C, V@G[O,l]

m Show that the set is obtained from simple sets by operations that preserve
convexity
m Intersection
m Affine transformation (scaling, translation, ...)
" ...
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Convex functions

m Definition: A function f : R” — R is convex, if dom f is a convex set and

f(Ox + (1 —0)y) < 0f(x) + (1 — 0)f(y), Vx,y € dom f, § € [0,1]

S
(z, fx)

m f is said to be concave, if —f is convex

m f is strictly convex, if

f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y), Vx,y €dom f, x #y, 0 € (0,1)

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Examples of convex functions

Examples on R

m Linear: ax+ b, a,b€R

m Exponential: e, a € R

m Powers: x®, forx >0, a>1lora<0
m Powers of absolute values: |x|%, a >0
u

Negative entropy: xlogx, for x > 0

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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m Powers of absolute values: |x|%, a >0

m Negative entropy: x logx, for x > 0

Examples on R"
m Affine: a’x+ b, a,beR"

= Norms: [Ix||, = (3504 |xi[P)

T

,p>1

Examples on RM™X"
= Affine: tr(ATX) +b =3T3 AjXj+b AcR™" beR

m Spectral norm (max non-singular value): || X||2
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Sufficient conditions of convexity

m First-order condition: A differentiable function f with convex domain is convex iff

f(y) > f(x) + VF(x)"(y — x), ¥x,y € dom f

J@) B
f(@) + V) (y — )

y/d

e

\\\
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Sufficient conditions of convexity

m First-order condition: A differentiable function f with convex domain is convex iff

f(y) > f(x) + Vf(x)T(y —x), Vx,y € dom f

~f(y) N
‘ ~ @)+ V@) (y — =)

L@

m Second-order condition: A twice differentiable function f with convex domain is
convex iff
V2f(x) = 0, Vx € dom f

m It is strictly convex if the assertion becomes V2f(x) > 0
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Example
® Quadratic over linear function
2
X
f(X Y ) =
y
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Example

® Quadratic over linear function

x2

flx,y)=—
y
m Computing the gradient and Hessian

2x X2 2
Vf(x’y):(i’_iz)a sz(X,y):?(y,—X)T(y,—X)
y y y
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Example

® Quadratic over linear function

2

X

f(X?y) =
y

m Computing the gradient and Hessian
2x X2 2
Vf(X’}’):(*’—*z)’ sz(X,y):?(y,—X)T(y,—X)
y y y

m Second-order sufficient condition: V2f(x,y) =0 fory >0

~~ = h.':.'h .'nh.“h
SN iai‘ii“"ig’ﬁ'ﬁ"
~ 1 e -§=§= Se==
B ‘\é\‘é\‘% SRS
= =
R
0L S -
2 <&
1™ 0
Yy 0 -2 g
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How to verify convexity?

m Verify the definition of convex functions

f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y), Vx,y € dom f, 6 € [0,1]

m Sometimes simpler to consider the 1D case
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How to verify convexity?

m Verify the definition of convex functions

f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y), Vx,y € dom f, 6 € [0,1]

m Sometimes simpler to consider the 1D case

m Check for V2f = 0

V2F =0 iff vI(V2f)v >0, Vv #£0

m Show that f is obtained from simple convex functions by operations that preserve
convexity

= Non-negative weihgted sum: f = >, f;, is convex if a; > 0, f; are convex

= Composition with an affine function: f(a’ x + b) is convex if f is convex
= Pointwise maximum: f(x) = max{fi(x), ..., f(x)} is convex if f;...f, are convex

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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The convex conjugate

m The convex conjugate f*(y) of a function f(x) is defined as

*(y) = S f<><,y> —f(x)

@)
| [ zy

—

B RO

m f*(y) is a convx function (pointwise supremum over linear functions)
m The biconjugate function f**(x) is the largest convex l.s.c. function below f(x)

m If f(x) is a convex, |.s.c. function, f**(x) = f(x)

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Examples

m f(x) =|x|:

0o if |y[<1
oo else

() = sup )~ = {
m f(x) = %XTQX, Q, posoitive definite

1 1
f*(y) = sup (x,y) — EXTQX = EyTQ*Iy
X

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Duality

m Fenchel’s duality theorem

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Overview

Convex optimization
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Convex optimization

m A general convex optimization problem is defined as

min  fo(x)
st. f(x)<0, i=1...m
Ax =b

where fy(x)...f,(x) are real-valued convex functions, x = (x1,...xs)T € R" is a
m-dimensional real-valued vector, Ax = b are affine equality constraints
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Convex optimization

m A general convex optimization problem is defined as

min  fo(x)
st. f(x)<0, i=1...m
Ax =b

where fy(x)...f,(x) are real-valued convex functions, x = (x1,...xs)T € R" is a
m-dimensional real-valued vector, Ax = b are affine equality constraints

m Convex optimization problems are considered as solvable!

m “The great watershed in optimization isn’t between linearity and non-linearity,
but convexity and non-convexity” [Rockafellar '93]
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Black box convex optimization

Generic iterative algorithm for convex optimization:
Pick any initial vector x% € R”, set k =0
Compute search direction d¥ € R”
Choose step size 7 such that f(x¥ + 7kdk) < f(x¥)
@ Set xkt1 = xk 4 7kdk k=k+1
Stop if converged, else goto 2

Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

' Daniel Cremers and Thomas Pock
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Black box convex optimization

Generic iterative algorithm for convex optimization:
Pick any initial vector x% € R”, set k =0
Compute search direction d¥ € R”
Choose step size 7 such that f(x¥ 4+ 7Kd*) < f(x¥)
@ Set xkt1 = xk 4 7kdk k=k+1
Stop if converged, else goto 2

Different methods to determine the search direction d*
m steepest descend
m conjugate gradients
m Newton, quasi-Newton

m Working-horse for the lazy: Limited memory BFGS quasi-Newton method
[Nocedal '80]
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Black box convex optimization

Generic iterative algorithm for convex optimization:
Pick any initial vector x% € R”, set k =0
Compute search direction d¥ € R”
Choose step size 7 such that f(x¥ 4+ 7Kd*) < f(x¥)
@ Set xkt1 = xk 4 7kdk k=k+1
Stop if converged, else goto 2

Different methods to determine the search direction d*
m steepest descend
m conjugate gradients
m Newton, quasi-Newton

m Working-horse for the lazy: Limited memory BFGS quasi-Newton method
[Nocedal '80]

Black box methods do not exploit the structure of the problem and hence are often
less effective

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Structured convex optimization

There are a number of efficient solvers available for important types of structured
convex optimization problems [Boyd, Vandenberghe '04]:
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Structured convex optimization

There are a number of efficient solvers available for important types of structured
convex optimization problems [Boyd, Vandenberghe '04]:

m Least squares problems:
min ||Ax — b||3
X
= Quadratic program (QP) and linear program (LP) (Q = 0):

min %XTQX-FCTX, Q-0
st. Ax=b, I <x<u
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= Quadratic program (QP) and linear program (LP) (Q = 0):
min %XTQX +c'x, Q=0
st. Ax=b, I <x<u
m Second order cone program (SOCP)

min f T x
s.t. [|Aix + bi|]? < cI.Tx—l— d, i=1l.m Fx=g

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

28 / 40



I

Structured convex optimization

There are a number of efficient solvers available for important types of structured
convex optimization problems [Boyd, Vandenberghe '04]:

m Least squares problems:
min ||Ax — b||3
X
= Quadratic program (QP) and linear program (LP) (Q = 0):
min %XTQX +c'x, Q=0
st. Ax=b, | <x<u
m Second order cone program (SOCP)

min f T x
s.t. [|Aix + bi|]? < CI-TX +d,i=1..m Fx=g

Many problems can be formulated in these frameworks

Fast methods available (simplex, interior point, ...)

m Sometimes ineffective for large-scale problems

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
28 /40




ey &

G Unversty of Tchnology

Overview

A class of convex problems
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A class of problems

Let us consider the following class of structured convex optimization problems
min F(Kx) + G(x
min F(Kx) + G(x) ,
m K: X — Y is a linear and continuous operator from a Hilbert space X to a

Hilbert space Y.

m F:Y—>RU{oo}, G: X — RU{oo} are “simple” convex, proper, |.s.c.
functions, and hence have an easy to compute prox operator:

lx — =l
2

2
proxg(z) = (I + 8G) " Y(z) = arg mXin + G(x)
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A class of problems

Let us consider the following class of structured convex optimization problems
min F(Kx) + G(x
min F(Kx) + G(x) ,
m K: X — Y is a linear and continuous operator from a Hilbert space X to a

Hilbert space Y.
m F:Y—>RU{oo}, G: X — RU{oo} are “simple” convex, proper, |.s.c.

functions, and hence have an easy to compute prox operator:

lx — =l
2

2
proxg(z) = (I + 8G) " Y(z) = arg mXin + G(x)

m It turns out that many standard problems can be cast in this framework.

m There exists a vast literature of numerical algorithms to solve this class of
problems
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Examples

m Image restoration: The ROF model

A
min | Vulls + 5k + u = fI3

m Compressed sensing: Basis pursuit problem (LASSO)

. A
min [[xll + 3 [lAx — b3
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Examples

m Image restoration: The ROF model

. A 2
min [[Vulls + Sk u =l ,

m Compressed sensing: Basis pursuit problem (LASSO)

. A
min [[xl1 + 2 [1Ax = b]3

m Machine learning: Linear support vector machine

A T~
min > llwll3 + > max (0,1 = yi ((w, x)) + b))

i=1

Convex Optimization for Computer Vision
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Examples

m Image restoration: The ROF model

A
min [ Vully + S|k *u—f5,
u 2

m Compressed sensing: Basis pursuit problem (LASSO)

. A
min [[xl1 + 2 [1Ax = b]3

m Machine learning: Linear support vector machine

A T~
min > llwll3 + > max (0,1 = yi ((w, x)) + b))

i=1

m General linear programming problems

. Ax = b
min (c, x) , s.t.
X < ) > ’ { X > 0
' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Primal, dual, primal-dual

The real power of convex optimization comes through duality

Recall the convex conjugate:

F*(y) = sup (x,y) — F(x), F™"(x)=sup (x,y) — F*(y)
xeX yey

If F(x) convex, l.s.c. than F**(x) = F(x)
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Primal, dual, primal-dual

The real power of convex optimization comes through duality

Recall the convex conjugate:

F*(y) = sup (x,y) — F(x), F™"(x)=sup (x,y) — F*(y)
xeX yey

If F(x) convex, l.s.c. than F**(x) = F(x)

Lnel)r} F(Kx) + G(x) (Primal)

min max (Kx, y) + G(x) — F*(y) (Primal-Dual)
xeXyeY
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Primal, dual, primal-dual

The real power of convex optimization comes through duality

Recall the convex conjugate:

F*(y) = sup (x,y) — F(x), F™"(x)=sup (x,y) — F*(y)
xeX yey

If F(x) convex, l.s.c. than F**(x) = F(x)
min F(Kx) + G(x) (Primal)

min max (Kx, y) + G(x) — F*(y) (Primal-Dual)
xeX yeyY

max — (F*(y) + G*(=K"y)) (Dual)

Allows to compute the duality gap, which is a measure of optimality
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Optimality conditions

We focus on the primal-dual formulation:

i K G(x) — F*
;nel)rgryneag( x,¥) + G(x) (v)

We assume, there exists a saddle-point (%X, $) € X X Y which satisfies the
Euler-Lagrange equations

{K)? — OF*(9)

0
K*§ +8G(%) > 0

B
Bl

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Standard first order approaches

1. Classical Arrow-Hurwicz method [Arrow, Hurwicz, Uzawa '58]

y™ = (I +70F*) "1 (y" + TKx")
X" = (1 +719G) 7 (x" — TK*y")

m Alternating forward-backward step in the dual variable and the primal variable
m Convergence under quite restrictive assumptions on 7

m For some problems very fast, e.g. ROF problem using adaptive time steps [Zhu,
Chan, '08]

2. Proximal point method [Martinet '70], [Rockafellar '76] for the search of zeros of
an operator, i.e. 0 € T(x)

Xn+1 — (/ +7_nT)71(Xn)

Very simple iteration
= In our framework T(x) = K*OF(Kx) + 0G(x)
= Unfortunately, in most interesting cases, (/ + 7" T)*1 is hard to evaluate

m Hence, the practical interest is limited

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Standard first order approaches
3. Douglas-Rachford splitting (DRS) [Mercier, Lions '79]

m Special case of the proximal point method if the operator T is the sum of two
operators, i.e. T=A+B

wl = (1 + 7A)71(2x" — w") + w" — x"
X1l = (/ +TB)71(WH+1)

m Only needs to evaluate the resolvent operator with respect to A and B
m Let A= K*9F(K) and B = 9G, the DRS algorithm becomes

1
w1 = arg min F(Kv) + > v —(@2x" — wh))|? + w" — x"
v T
X" = argmin G(x) + — [|x — W"HH2
X 2T

m Equivalent to the alternating direction method of multipliers (ADMM) [Eckstein,
Bertsekas '89]

Equivalent to the split-Bregman iteration [Goldstein, Osher '09]

Equivalent to an alternating minimization on the augmented Lagrangian
formulation

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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A simple primal-dual algorithm

Proposed in a series of papers: [Pock, Cremers, Bischof, Chambolle, '09], [Chambolle,
Pock, '10], [Pock, Chambolle, '11]

Initialization: Choose s.p.d. T, ¥, 0 € [0,1], (x°,y%) € X x Y.
Iterations (n > 0): Update x", y" as follows:

Xn+1
yn+1

m Alternates gradient descend in x and gradient ascend in y

(I + TOG)~L(x" — TK*y")
(I + ZOF*) =1 (y" + K (" + 0(x"1 — x)))

Linear extrapolation of iterates of x in the y step
T, ¥ can be seen as preconditioning matrices

Can be derived from a pre-conditioned DRS splitting algorithm

Can be seen as a relaxed Arrow-Hurwicz scheme
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Relations to the proximal-point algorithm

m The iterations of PD can be written as the variational inequality
[He,Yuan '10]

X — Xn+1 BG(Xn+1) + K*yn+1 Xn+1 _ Xn
<( y— o ) ) ( OF*(y™1) — Kyt + M [ >0,

T—l —K*
M= [ oK ¥ }
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Relations to the proximal-point algorithm

m The iterations of PD can be written as the variational inequality
[He,Yuan '10]

X — Xn+1 BG(XIH»I) + K*yn+1 Xn+1 _ Xn
<( y— o ) ) ( OF*(y™1) — Kyt + M [ >0,

T—l —K*
M= [ oK ¥ }

m This is exactly the proximal-point algorithm, but with a norm in M.
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Relations to the proximal-point algorithm

m The iterations of PD can be written as the variational inequality
[He,Yuan '10]

X — Xn+1 aG(XIH»l) + K*yn+1 Xn+1 _ X”
<( y— o ) ) ( OF*(y™1) — Kyt + M [ >0,

T71 —K*
M= { oK ¥ }

m This is exactly the proximal-point algorithm, but with a norm in M.

m Convergence is ensured if M is symmetric and positive definite

m This is the case if = 1 and the assertion HZ%KT% 1> < 1is fulfilled.
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A family of diagonal preconditioners

m It is important to choose T, ¥ such that the prox-operators are still easy to
compute

m Restrict the preconditioning matrices to diagonal matrices
= It turns out that: Let K € R™*", T = diag(T) and ¥ = diag(o) such that

1 1
= s e e O ST e
S K 2 i Kl

then for any a € [0, 2]
[EEKTZ|2<1.

Gives an automatic problem-dependent choice of the primal and dual steps

Allows to apply the algorithm in a plug-and-play fashion

For a = 0, equivalent to the alternating step method [Eckstein, Bertsekas, '90]
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Convergence rates

The algorithm gives different convergence rates on different problem classes
[Chambolle, Pock, '10]

m F* and G nonsmooth: O(1/N)
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Convergence rates

The algorithm gives different convergence rates on different problem classes
[Chambolle, Pock, '10]

m F* and G nonsmooth: O(1/N)
m F* or G uniformly convex: O(1/N?)
® F* and G uniformly convex: O(w"), w < 1

m Coincides with so far best known rates of first-order methods

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
40 / 40




Ty &

G Unversty of Tecnology

Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

m One simple processor for each unknown
m Each processor has a small amount of local memory

m According to the structure of K, each processor can inter-change data with its
neighboring processors
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Parallel computing?

The algorithm basically computes matrix-vector products
The matrices are usually very sparse

m One simple processor for each unknown
m Each processor has a small amount of local memory

m According to the structure of K, each processor can inter-change data with its
neighboring processors

Recent GPUs already go into this direction

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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