
DAGM 2011 Tutorial on
Convex Optimization for Computer Vision

Part 3: Convex Solutions for Stereo and Optical Flow

Daniel Cremers
Computer Vision Group

Technical University of Munich

Graz University of Technology

Thomas Pock
Institute for Computer Graphics and Vision

Graz University of Technology

Frankfurt, August 30, 2011



tugraz
Graz University of Technology

Overview

1 Motion estimation

2 Stereo estimation
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Motion estimation

Motion estimation (optical flow) is a central topic in computer vision,

Computes a 2D vector field, describing the motion of pixel intensities

Applications:

Tracking

Video compression, video interpolation

3D reconstruction
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Challenges

Motion estimation is still a very difficult problem

Aperture problem

No information in untextured areas

Illumination changes, shadows, ...

Large motion of small objects, occlusions, ...
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The correspondence problem

Find corresponding points in successive frames

Brightness (color) constancy assumption

I1(x)− I2(x + u(x)) ≈ 0

u(x) = (u1(x), u2(x)) is the displacement vector

Ambiguity: Many points with similar brightness (color)!

Generalization: Constancy of image features (gradients, NCC, ...)
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Variational motion estimation

Generic variational model for motion estimation

min
u

R(u)︸ ︷︷ ︸
Regularization term

+

∫
Ω
|I1(x)− I2(x + u(x))|p dx︸ ︷︷ ︸

Data term

Regularization term:
Should favor physically meaningful flow fields
Popular convex regularizers: Quadratic, total variation, ...

Data term:
Highly non-convex → hard to minimize
Different strategies to deal with the non-convexity of the data term

Vast literature on motion estimation:
Window based optical flow: [Lucas, Kanade, 1981]
Variational optical flow: [Horn, Schunck, 1981]
Discontinuity preserving optical flow: [Shulman, Hervé ’89]
Robust optical flow: [Black, Anadan, ’93]
Highly accurate optical flow: [Brox, Bruhn, Papenberg, Weickert ’04]
Real-time optical flow: [A. Bruhn, J. Weickert, T. Kohlberger, C. Schnörr ’05]
Primal-dual optimization on the GPU: [Zach, Pock, Bischof ’07]
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Linearization of the image

Perform a first order Taylor expansion of the function I2(x + u(x)) at x + u0(x)
[Horn, Schunck, 1981], [Lucas, Kanade, 1981]

I2(x + u(x)) ≈ I2(x + u0(x)) + 〈∇I2(x + u0(x)), u(x)− u0(x)〉
Only valid close to u0, i.e. ‖u(x)− u0(x)‖ ≤ ε

Leads to the classical optical flow constraint:

ρ(u) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 ≈ 0

Note: ρ(u) is linear in u and hence |ρ(u)| is convex!
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TV-L1 motion estimation

It turns out that total variation regularization in combination with a L1 data term
performs well

Total variation allows for motion discontinuities

L1 data term allows for outliers in the data term (occlusions, noise, ...)

min
‖u−u0‖≤ε

α

∫
Ω
|Du|+ ‖ρ(u)‖1

Non-differentiable and hence difficult to solve

Smoothing and fixed-point iteration: [Brox, Bruhn, Papenberg, Weickert ’04]

Primal-dual optimization: [Chambolle, Pock, ’10]

min
‖u−u0‖≤ε

max
‖p‖∞≤α

−
∫

Ω
u div p dx + ‖ρ(u)‖1

Allows to compute the exact solution
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Second-order approximation of the data term

Consider a more general non-convex data term of the form∫
Ω
φ(x , u(x)) dx

Perform a second order Taylor expansion of the data term φ(x , u(x)) around
u0(x) [Werlberger, Pock, Bischof ’10]

φ(x , u(x)) ≈ φ(x , u0(x)) + (∇φ(x , u0(x)))T (u(x)− u0(x)) +

(u(x)− u0(x))T
(
∇2φ(x , u0(x))

)
(u(x)− u0(x)) ,

To ensure convexity the Hessian ∇2φ(x , u0(x)) has to be positive semidefinite

We use the following diagonal approximation of the Hessian

∇2φ =

[
(φxx (x , u0(x)))+ 0

0 (φyy (x , u0(x)))+

]

Can be used with arbitrary data terms: SAD, NCC, ...

Still only valid in a small neighborhood around u0

Minimization using primal-dual schemes

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Large displacements

How can we compute large displacements?

Integrate the algorithm in a coarse-to fine / warping framework

Similar to multigrid schemes, speeds up the minimization process

Does not give any guarantees!
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Large displacement optical flow without warping

Consider the following equivalent generic formulation [Steinbrücker, Pock,
Cremers, ’09]

min
u
R(u) +

∫
Ω
φ(u) dx ⇐⇒ min

u,v
R(u) +

∫
Ω
φ(v) dx s.t. u = v

Quadratic penality approach to obtain a unconstrained formulation

min
u,v
R(u) +

1

2θ
‖u− v‖2

2 +

∫
Ω
φ(v) dx

Becomes equivalent to the constrained formulation for θ → 0+

Observations:
Solution with respect to u reduces to an image denoising problem
Solution with respect to v reduces to pointwise non-convex problems

Annealing-type scheme: Alternating minimization for a sequence of decreasing
parameters θi

Advantages: No coarse-to-fine, no warping, arbitrary data terms

Disadvantage: Results strongly depend on the sequence θi
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Varying illumination

Note: optical flow 6= motion estimation!

Instead of (or in combination with) the original images I1,2 use gradient images
∇I1,2 [Brox, Bruhn, Papenberg, Weickert ’04]

Photometric invariants: [Mileva, Bruhn, Weickert ’07]

Structure-texture decomposition: Illumination changes and shadows correspond
to large image features [Wedel, Pock, Zach, Bischof, Cremers ’08]

Addititve decomposition using the ROF model:

I = S + T , S := arg min
u

TV(u) +
λ

2
‖u − I‖2

2

(a) I (b) S (c) T

Use texture component T to compute the optical flow
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Modified optical flow constraint

Recall the optical flow constraint

ρ(u) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 ≈ 0

We can modify the constraint [Shulman, Hervé ’89]

δ(u, v) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 − v(x) ≈ 0

v(x) is a smooth function modeling illumination changes
Note that δ(u, v) is still linear in u and v !

Additional regularization needed for v(x)

min
‖u−u0‖≤ε,v

α

∫
Ω
|Du|+ β

∫
Ω
|Dv |+ ‖δ(u(x), v(x))‖1

(a) Input (b) Ground truth (c) Estimated motion (d) Illumination
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Overview

1 Motion estimation

2 Stereo estimation
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Stereo
If I1 and I2 come from a stereo camera or a moving camera that browses a static
scene, the displacement can be restricted to 1D problems on the epipolar lines,
[Slesareva, Bruhn, Weickert ’05]
Each stereo pair can be normalized such that the displacement is only horizontally
The depth z can be computed from the displacement u via

z(x , y) =
bf

u(x , y)

where b is the baseline and f is the focal length of the camera

Optical flow constraint for stereo

ρ̂(u) = I1 − I2(x + u0(x , y), y)− ∂x I2(x + u0(x , y), y)(u(x , y)− u0(x , y)) ≈ 0

TV-L1 based stereo

min
‖u−u0‖≤ε

α

∫
Ω
|Du|+ ‖ρ̂(u(x , y))‖1

Advantages
Highly accurate due to sub-pixel accuracy
fast to compute (real-time)

Disadvantages
Does not compute the globally optimal solution (coarse-to-fine)
Large baseline leads to more accurate results but causes large displacements
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Application: range estimation in a driving car (with Daimler AG)

Input images provided by a calibrated stereo rig

(a) Left image (b) Right image

Range image computed by the TV-L1 based stereo algorithm

(a) Range image
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(b) Profile of street

Total variation regularization leads to the staircasing effect!
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Total generalized variation

The total variation can be written (via the convex conjugate) as

TVα(u) = α

∫
Ω
|Du| = sup

{∫
Ω
u div v dx

∣∣∣ v ∈ C1
c(Ω,Rd ), ‖v‖∞ ≤ α

}
,

In [Bredies, Kunisch, Pock, SIIMS’10], we proposed a generalization of the total
variation to higher order smoothness.

TGVk
α(u) = sup

{∫
Ω
u divk v dx

∣∣∣ v ∈ Ckc (Ω,Symk (Rd )),

‖divl v‖∞ ≤ αl , l = 0, . . . , k − 1
}
,

For k = 2 it can be written as

TGV2
α(u) = inf

w
α1

∫
Ω
|Du − w|+ α0

∫
Ω
|Dw|

TGV2 can be used to reconstruct piecewise affine functions
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Image restoration examples

(a) Clean image (b) Noisy image

(c) TV (d) TGV2
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Image restoration examples
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(b) TGV2
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TGV based stereo

Simply replace TV regularization by TGV regularization in the stereo model
[Ranftl, Pock, Gehrig, Franke ’11]

min
‖u−u0‖≤ε,w

α1

∫
Ω
|Du − w|+ α0

∫
Ω
|Dw|+ ‖ρ̂(u(x , y))‖1

Comparison on the stereo problem
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Range estimation from a driving car
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Summary and open questions

Introduced the problem of motion estimation in computer vision

Motion estimation is still a challenging problem, not near to be solved

Highly non-convex data term leads to numerical difficulties

A simple linearization approach works well in practice

Can be used for stereo estimation

TGV regularization avoids staircasing-artifacts

Global Solutions for Motion and Stereo?
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