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= Motion estimation (optical flow) is a central topic in computer vision,

m Computes a 2D vector field, describing the motion of pixel intensities

Applications:
m Tracking
m Video compression, video interpolation
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Challenges

Motion estimation is still a very difficult problem

m Aperture problem

m No information in untextured areas
m lllumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




ey &

G Unversty of Tchnology

Challenges

Motion estimation is still a very difficult problem

m Aperture problem

m No information in untextured areas
m lllumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




ey &

G Unversty of Tchnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem

m No information in untextured areas

m lllumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




ey &

G Unversty of Tchnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem

m No information in untextured areas

m lllumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




ey &

G Unversty of Tchnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem
m No information in untextured areas

m lllumination changes, shadows, ...

L]

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




ey &

G Unversty of Tchnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem
m No information in untextured areas

m lllumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




Ty &

G Unversty of Tecnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem

m No information in untextured areas

Illumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




Ty &

G Unversty of Tecnology

Challenges

Motion estimation is still a very difficult problem
m Aperture problem

m No information in untextured areas

Illumination changes, shadows, ...

m Large motion of small objects, occlusions, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
4/21




The correspondence problem

m Find corresponding points in successive frames

I Iz

m Brightness (color) constancy assumption

h(x) — (x4 u(x)) ~ 0

u(x) = (u1(x), u2(x)) is the displacement vector

Ambiguity: Many points with similar brightness (color)!

Generalization: Constancy of image features (gradients, NCC, ...)
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Variational motion estimation

m Generic variational model for motion estimation

min R(u) +/ [h(x) — (x4 u(x))[P dx
u — Q

Regularization term

Data term
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u — Q
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Data term

m Regularization term:

m Should favor physically meaningful flow fields
m Popular convex regularizers: Quadratic, total variation, ...

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

6 /21



Ty &

o by ot Technoogy

Variational motion estimation

m Generic variational model for motion estimation

min R(u) +/ [(x) = k(x4 u(x))[P dx
u — Q

Regularization term

Data term

m Regularization term:

m Should favor physically meaningful flow fields
m Popular convex regularizers: Quadratic, total variation, ...

m Data term:

m Highly non-convex — hard to minimize
u Different strategies to deal with the non-convexity of the data term

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

6 /21



Ty &

G Uty ofTctnoiogy

Variational motion estimation

m Generic variational model for motion estimation

min R(u) +/ [(x) = k(x4 u(x))[P dx
u — Q

Regularization term

Data term

m Regularization term:

Should favor physically meaningful flow fields
Popular convex regularizers: Quadratic, total variation, ...

m Data term:

Highly non-convex — hard to minimize
Different strategies to deal with the non-convexity of the data term

m Vast literature on motion estimation:

Window based optical flow: [Lucas, Kanade, 1981]

Variational optical flow: [Horn, Schunck, 1981]

Discontinuity preserving optical flow: [Shulman, Hervé '89]

Robust optical flow: [Black, Anadan, '93]

Highly accurate optical flow: [Brox, Bruhn, Papenberg, Weickert '04]
Real-time optical flow: [A. Bruhn, J. Weickert, T. Kohlberger, C. Schnorr '05]
Primal-dual optimization on the GPU: [Zach, Pock, Bischof '07]
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Linearization of the image

m Perform a first order Taylor expansion of the function h(x + u(x)) at x + ug(x)
[Horn, Schunck, 1981], [Lucas, Kanade, 1981]
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m Perform a first order Taylor expansion of the function h(x + u(x)) at x + ug(x)
[Horn, Schunck, 1981], [Lucas, Kanade, 1981]

-
u

m h(x+u(x)) ~ h(x+ up(x)) + (Vh(x + up(x)), u(x) — up(x))
= Only valid close to ug, i.e. [Ju(x) —ug(x)|| <e
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m Perform a first order Taylor expansion of the function h(x + u(x)) at x + ug(x)
[Horn, Schunck, 1981], [Lucas, Kanade, 1981]

-
u

m h(x+u(x)) ~ h(x+ up(x)) + (Vh(x + up(x)), u(x) — up(x))
= Only valid close to ug, i.e. [Ju(x) —ug(x)|| <e

m Leads to the classical optical flow constraint:

p(u) = h(x) = h(x + uo(x)) — (Vh(x + uo(x)), u(x) — uo(x)) = 0

u Note: p(u) is linear in u and hence |p(u)| is convex!
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TV-L! motion estimation

m It turns out that total variation regularization in combination with a L! data term
performs well

m Total variation allows for motion discontinuities

m L! data term allows for outliers in the data term (occlusions, noise, ...)

/ |Dul + [[p(u)lls

[lu— uoH<

m Non-differentiable and hence difficult to solve

Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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TV-L! motion estimation

m It turns out that total variation regularization in combination with a L! data term
performs well

Total variation allows for motion discontinuities

m L! data term allows for outliers in the data term (occlusions, noise, ...)

min__a [ 10u] + [p(w)ls
Q

[lu—uo|l <e

m Non-differentiable and hence difficult to solve

Smoothing and fixed-point iteration: [Brox, Bruhn, Papenberg, Weickert '04]

m Primal-dual optimization: [Chambolle, Pock, '10]

—/ udivp dx+ [|p(u)]x
Q

min max
lu—uo|| <e [Iplloc <cx

m Allows to compute the exact solution
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Second-order approximation of the data term

m Consider a more general non-convex data term of the form

/Qqs(x,u(x)) dx

m Perform a second order Taylor expansion of the data term ¢(x, u(x)) around
ug(x) [Werlberger, Pock, Bischof '10]

$(x, u(x)) = (x, uo(x)) + (Vé(x,u0(x)))" (u(x) — uo(x)) +
(u(x) = uo(x))" (V2@(x, uo(x))) (u(x) — uo(x)),

To ensure convexity the Hessian V2¢(x, ug(x)) has to be positive semidefinite

We use the following diagonal approximation of the Hessian

2, (¢XX(X7 UO(X)))+ 0
Vig= 0 (Byy (x, UO(X)))Jr

Can be used with arbitrary data terms: SAD, NCC, ...
Still only valid in a small neighborhood around ug

m Minimization using primal-dual schemes
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Large displacements

m How can we compute large displacements?

m Integrate the algorithm in a coarse-to fine / warping framework

- . ——— solve convex relaxation

warp & upsample

- ——— solve convex relaxation

m Similar to multigrid schemes, speeds up the minimization process

m Does not give any guarantees!
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Large displacement optical flow without warping

m Consider the following equivalent generic formulation [Steinbriicker, Pock,
Cremers, '09]

muinR(u)-i-/qu(u) dx <= T’iPR(u)—i-/QqS(v) dx st. u=v
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m Consider the following equivalent generic formulation [Steinbriicker, Pock,
Cremers, '09]

min R (u) -|—/ ¢(u) dx <= minR(u) +/ o(v) dx st. u=v
u Q u,v Q
= Quadratic penality approach to obtain a unconstrained formulation

X 1
minR(w) + oolu vl + | o(v) dx

= Becomes equivalent to the constrained formulation for § — 0F
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Cremers, '09]

min R (u) +/ o(u) dx <= minR(u)—l—/ o(v) dx st. u=v
u Q u,v Q
= Quadratic penality approach to obtain a unconstrained formulation
inR L 2 d
minR(w) + oo u— i3+ | o(v) dx

Becomes equivalent to the constrained formulation for § — 0t

Observations:

= Solution with respect to u reduces to an image denoising problem
m Solution with respect to v reduces to pointwise non-convex problems
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Large displacement optical flow without warping

m Consider the following equivalent generic formulation [Steinbriicker, Pock,
Cremers, '09]

min R(u) +/ o(u) dx <= minR(u)—l—/ o(v)dx st. u=v
u Q u,v Q
= Quadratic penality approach to obtain a unconstrained formulation
inR L 2 d
minR(w) + oo u— i3+ | o(v) dx

= Becomes equivalent to the constrained formulation for § — 0F
= Observations:

= Solution with respect to u reduces to an image denoising problem
m Solution with respect to v reduces to pointwise non-convex problems

m Annealing-type scheme: Alternating minimization for a sequence of decreasing
parameters 6;

m Advantages: No coarse-to-fine, no warping, arbitrary data terms

m Disadvantage: Results strongly depend on the sequence 6;
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Varying illumination

m Note: optical flow # motion estimation!
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m Note: optical flow # motion estimation!
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= Photometric invariants: [Mileva, Bruhn, Weickert '07]
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Varying illumination

m Note: optical flow # motion estimation!

= Instead of (or in combination with) the original images /1 > use gradient images
V2 [Brox, Bruhn, Papenberg, Weickert '04]

= Photometric invariants: [Mileva, Bruhn, Weickert '07]

m Structure-texture decomposition: Illumination changes and shadows correspond
to large image features [Wedel, Pock, Zach, Bischof, Cremers '08]
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Varying illumination

Note: optical flow # motion estimation!

Instead of (or in combination with) the original images /1 > use gradient images
Vi [Brox, Bruhn, Papenberg, Weickert '04]

Photometric invariants: [Mileva, Bruhn, Weickert ’07]

m Structure-texture decomposition: lllumination changes and shadows correspond
to large image features [Wedel, Pock, Zach, Bischof, Cremers '08]

Addititve decomposition using the ROF model:

A
I=S+T, S:= argminTV(u)+§||u— 13

@) ! (b) S

m Use texture component T to compute the optical flow
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Modified optical flow constraint

m Recall the optical flow constraint

p(u) = h(x) — (x4 ug(x)) — (Vh(x 4 ug(x)),u(x) — up(x)) ~ 0
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Modified optical flow constraint

m Recall the optical flow constraint

p(u) = h(x) — (x4 ug(x)) — (Vh(x 4 ug(x)),u(x) — up(x)) ~ 0
= We can modify the constraint [Shulman, Hervé '89]
o(u,v) = h(x) — b(x 4+ ug(x)) — (Vh(x + up(x)),u(x) — ug(x)) — v(x) =~ 0

= v(x) is a smooth function modeling illumination changes
= Note that §(u, v) is still linear in u and v!
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Modified optical flow constraint

m Recall the optical flow constraint

p(u) = h(x) — (x4 ug(x)) — (Vh(x 4 ug(x)),u(x) — up(x)) ~ 0
= We can modify the constraint [Shulman, Hervé '89]
o(u,v) = h(x) — b(x 4+ ug(x)) — (Vh(x + up(x)),u(x) — ug(x)) — v(x) =~ 0

v(x) is a smooth function modeling illumination changes
Note that 6(u, v) is still linear in u and v!

= Additional regularization needed for v(x)

min o /Q \Du| + 8 /Q DV + [[5(u(x), v(x)) |1

lu—uoll <e,v

S |

(a) Input (b) Ground truth (c) Estimated motion (d) Nlumination
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Overview

Stereo estimation
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Stereo

m If /1 and /» come from a stereo camera or a moving camera that browses a static
scene, the displacement can be restricted to 1D problems on the epipolar lines,
[Slesareva, Bruhn, Weickert '05]

m Each stereo pair can be normalized such that the displacement is only horizontally

m The depth z can be computed from the displacement u via

bf

= e

where b is the baseline and f is the focal length of the camera
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Stereo

If 1 and , come from a stereo camera or a moving camera that browses a static
scene, the displacement can be restricted to 1D problems on the epipolar lines,
[Slesareva, Bruhn, Weickert '05]

m Each stereo pair can be normalized such that the displacement is only horizontally

m The depth z can be computed from the displacement u via
bf
z(x,y) =
u(x,y)

where b is the baseline and f is the focal length of the camera
m Optical flow constraint for stereo

A(u) = h = h(x 4 uo(x,y),y) — Oxh(x + wo(x,y), y)(u(x,y) — uo(x,y)) = 0

m TV-L! based stereo

min a/ \Dul + [|p(u(x, )1
Q

[lu—ugll <e
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Stereo

If 1 and , come from a stereo camera or a moving camera that browses a static
scene, the displacement can be restricted to 1D problems on the epipolar lines,
[Slesareva, Bruhn, Weickert '05]

Each stereo pair can be normalized such that the displacement is only horizontally
The depth z can be computed from the displacement u via

bf
u(x,y)
where b is the baseline and f is the focal length of the camera

z(x,y) =

Optical flow constraint for stereo

A(u) = h = h(x 4 uo(x,y),y) — Oxh(x + wo(x,y), y)(u(x,y) — uo(x,y)) = 0

TV-L! based stereo

/ |Dul + [|7(u(x, v)) 1

[lu— U0H<5

Advantages
m Highly accurate due to sub-pixel accuracy
m fast to compute (real-time)
Disadvantages
= Does not compute the globally optimal solution (coarse-to-fine)

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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Application: range estimation in a driving car (with Daimler AG)

m Input images provided by a calibrated stereo rig

(a) Left image (b) Right image

= Range image computed by the TV-L1 based stereo algorithm

(a) Range image (b) Profile of street

m Total variation regularization leads to the staircasing effect!

' Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision

16 / 21



Wi & TUT - B

Total generalized variation

m The total variation can be written (via the convex conjugate) as

TVa(u) = a/ |Du| = sup {/ udivv dx ( v e CHQRY), [v]|eo < a},
Q Q
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m The total variation can be written (via the convex conjugate) as

TVa(u) = a/ |Du| = sup {/ udivv dx ( v e CHQRY), [v]|eo < a},
Q Q

m In [Bredies, Kunisch, Pock, SIIMS'10], we proposed a generalization of the total
variation to higher order smoothness.

TGV (u) = sup {/ udivk v dx | v e CK(Q, Sym*(RY)),
Q

Idiv/ Voo < au, /:o,...,k—l},
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Total generalized variation

m The total variation can be written (via the convex conjugate) as

TVa(u) = a/ |Du| = sup {/ udivv dx ( v e CHQRY), [v]|eo < a},
Q Q

m In [Bredies, Kunisch, Pock, SIIMS'10], we proposed a generalization of the total
variation to higher order smoothness.

TGV (u) = sup {/ udivk v dx | v e CK(Q, Sym*(RY)),
Q

Idiv/ Voo < au, /:o,...,k—l},

m For k = 2 it can be written as

TGVi(u):infal/ \Du—w\+a0/|Dw|
w Q Q

= TGV? can be used to reconstruct piecewise affine functions
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Image restoration examples

(a) Clean image (b) Noisy image

(d) TGV?
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TGV based stereo

m Simply replace TV regularization by TGV regularization in the stereo model
[Ranftl, Pock, Gehrig, Franke '11]

min aI/Q|Du—w|+ao/Q|Dw|+||ﬁ(u(x,y))||1

llu—uol| <e,w

m Comparison on the stereo problem

(b) TGV?
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Range estimation from a driving car
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Summary and open questions

Introduced the problem of motion estimation in computer vision
Motion estimation is still a challenging problem, not near to be solved

Highly non-convex data term leads to numerical difficulties

A simple linearization approach works well in practice

Can be used for stereo estimation

TGV regularization avoids staircasing-artifacts
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Summary and open questions

Introduced the problem of motion estimation in computer vision
Motion estimation is still a challenging problem, not near to be solved

Highly non-convex data term leads to numerical difficulties

A simple linearization approach works well in practice

Can be used for stereo estimation

TGV regularization avoids staircasing-artifacts

m Global Solutions for Motion and Stereo?
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