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Image labeling problems

Segmentation
and Classification

Stereo

Optic flow
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3D Reconstruction
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Unifying concept: variational approach

Problem solution is the minimizer of an energy functional E ,

argmin
u∈V

E(u).

In the variational framework, we adopt a
continuous world view.
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A greyscale image is a real-valued function
u : Ω→ R on an open set Ω ⊂ R2.
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Region Ω0 (background)

Region Ω1 (flower)Σ

Ω1

Ω1

Ω0

2D 3D

Volume usually modeled as the level set {x ∈ Ω : u(x) = 1}
of a binary function u : Ω→ {0,1}.
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non-convex energy

• Cannot be globally minimized
• Realistic modeling

convex energy

• Efficient global minimization
• Often unrealistic models
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Convex relaxation: best of both worlds?

E

R{ε

• Start with realistic non-convex model energy E
• Relax to convex lower bound R, which can be efficiently

minimized
• Find a (hopefully small) optimality bound ε to estimate quality of

solution.
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The TV-L2 (ROF) model, Rudin-Osher-Fatemi 1992

For a given noisy input image f , compute

argmin
u∈L2(Ω)

[∫
Ω

|∇u|2 dx︸ ︷︷ ︸
regularizer / prior

+
1

2λ

∫
Ω

(u − f )2 dx︸ ︷︷ ︸
data / model term

]
.

Note: In Bayesian statistics, this can be interpreted as a MAP
estimate for Gaussian noise.

Original Noisy Result, λ = 2
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V = Rn V = L2(Ω)

Elements finitely many components infinitely many “components”
xi ,1 ≤ i ≤ n u(x), x ∈ Ω

Inner
Product

(x , y) =
∑n

i=1 xiyi (u, v) =
∫

Ω
uv dx

Norm |x |2 =
√∑n

i=1 x2
i ‖u‖2 =

(∫
Ω
|u|2 dx

) 1
2

Derivatives of a functional E : V → R

Gradient
(Fréchet ) dE(x) = ∇E(x) dE(u) = ?

Directional
(Gâteaux ) δE(x ; h) = ∇E(x) · h δE(u; h) = ?

Condition for
minimum

∇E(x̂) = 0 ?
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Definition
Let V be a vector space, E : V → R a functional, u,h ∈ V. If the limit

δE(u; h) := lim
α→0

1
α

(E(u + αh)− E(u))

exists, it is called the Gâteaux differential of E at u with increment h.

• The Gâteaux differential can be though of as the directional
derivative of E at u in direction h.

• A classical term for the Gâteaux differential is “variation of E”,
hence the term “variational methods”. You test how the functional
“varies” when you go into direction h.
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The variational principle is a generalization of the necessary condition
for extrema of functions on Rn.

Theorem (variational principle)

If û ∈ V is an extremum of a functional E : V → R, then

δE(û; h) = 0 for all h ∈ V.

For a proof, note that if û is an extremum of E , then 0 must be an
extremum of the real function

t 7→ E(û + th)

for all h.
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Method:
• Compute the Gâteaux derivative of E at u in direction h, and

write it in the form

δE(u; h) =

∫
Ω

φuh dx ,

with a function φu : Ω→ R and a test function h ∈ C∞c (Ω).
• At an extremum, this expression must be zero for arbitrary test

functions h, thus (due to the “duBois-Reymond Lemma”) you get
the condition

φu = 0.

This is the Euler-Lagrange equation of the functional E .
• Note: the form above is in analogy to the finite-dimensional case,

where the gradient satisfies δE(x ; h) = 〈∇E(x), ·h〉.
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The Euler-Lagrange equation is a PDE which has to be satisfied by
an extremal point û. A ready-to-use formula can be derived for
energy functionals of a specific, but very common form.

Theorem
Let û be an extremum of the functional E : C1(Ω)→ R, and E be of
the form

E(u) =

∫
Ω

L(u,∇u, x) dx ,

with L : R× Rn × Ω→ R, (a,b, x) 7→ L(a,b, x) continuously
differentiable. Then û satisfies the Euler-Lagrange equation

∂aL(u,∇u, x)− divx [∇bL(u,∇u, x)] = 0,

where the divergence is computed with respect to the location
variable x , and

∂aL :=
∂L
∂a
,∇bL :=

[
∂L
∂b1

. . .
∂L
∂bn

]T

.
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The Gâteaux derivative of E at u in direction h is

δE(u; h) = lim
α→0

1
α

∫
Ω

L(u + αh,∇(u + αh), x)− L(u,∇u, x) dx .

Because of the assumptions on L, we can take the limit below the
integral and apply the chain rule to get

δE(u; h) =

∫
Ω

∂aL(u,∇u, x)h +∇bL(u,∇u, x) · ∇h dx .

Applying integration by parts to the second part of the integral with
p = ∇bL(u,∇u, x), noting h

∣∣
∂Ω

= 0, we get

δE(u; h) =

∫
Ω

(
∂aL(u,∇u, x)− divx [∇bL(u,∇u, x)]

)
· h dx .

This is the desired expression, from which we can directly see the
definition of φu.
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• The regularizer of the ROF functional is∫
Ω

|∇u|2 dx ,

which requires u to be differentiable. Yet, we are looking for
minimizers in L2(Ω). It is necessary to generalize the definition of
the regularizer, which will lead to the total variation in the next
section.

• The total variation is not a differentiable functional, so the
variational principle is not applicable. We need a theory for
convex, but not differentiable functionals.

18
∫



Total Variation and Co-Area
∫ x
0

∫ x
0 D. Cremers, B. Goldlücke, T. Pock

Overview
∫ x

0
ICCV 2011 Tutorial
Variational Methods in Computer Vision

1 Variational Methods
Introduction
Convex vs. non-convex functionals
Archetypical model: ROF denoising
The variational principle
The Euler-Lagrange equation

2 Total Variation and Co-Area
The space BV(Ω)
Geometric properties
Co-area

3 Convex analysis
Convex functionals
Constrained Problems
Conjugate functionals
Subdifferential calculus
Proximation and implicit subgradient descent

4 Summary

19
∫



Total Variation and Co-Area
∫ x
0 The space BV(Ω)

∫ x
0 D. Cremers, B. Goldlücke, T. Pock
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• Let u ∈ L1
loc(Ω). Then the total variation of u is defined as

J(u) := sup
{
−
∫

Ω

u · div(ξ) dx : ξ ∈ C1
c (Ω,Rn), ‖ξ‖∞ ≤ 1

}
.

• The space BV(Ω) of functions of bounded variation is defined as

BV(Ω) :=
{

u ∈ L1
loc(Ω) : J(u) <∞

}
.

An idea why this is the same as before: the norm of the gradient
|∇u(x)|2 below the integral for a fixed point x can be written as

|∇u(x)|2 = sup
ξ∈Rn:|ξ|2≤1

∇u(x) · ξ.

We can then use Gauss’ theorem again to shift the gradient from u to
a divergence on ξ.
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Below are the main analytical properties of the total variation. It also
enjoys a number of interesting geometrical relationships, which will
be explored next.

Proposition

• J is a semi-norm on BV(Ω), and it is convex on L2(Ω).
• J is lower semi-continuous on L2(Ω), i.e.

‖un − u‖2 → 0 =⇒ J(u) ≤ lim inf
un

J(un).

The above can be shown immediately from the definition, lower
semi-continuity requires Fatou’s Lemma.

Lower semi-continuity is important for the existence of minimizers,
see next section.
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{1U = 0}

∂U

U = {1U = 1}

n

Let U ⊂ Ω. Then the characteristic
function of U is defined as

1U(x) :=

{
1 if x ∈ U,
0 otherwise.

Notation
If u : Ω→ R then {f = 0} is a short notation for the set

{x ∈ Ω : f (x) = 0} ⊂ Ω.

Similar notation is used for inequalities and other properties.
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We now compute the TV of the characteristic function of a
“sufficiently nice” set U ⊂ Ω, with a C1-boundary.

Remember: to compute the total variation, one maximizes over all
vector fields ξ ∈ C1

c (Ω,Rn), ‖ξ‖∞ ≤ 1:

−
∫

Ω

1U · div(ξ) dx = −
∫

U
div(ξ) dx

=

∫
∂U

n · ξ ds (Gauss’ theorem)

The expression is maximized for any vector field with ξ|∂U = n, hence

J(1U) =

∫
∂U

ds = Hn−1(∂U).

Here, Hn−1, is the (n − 1)-dimensional Haussdorff measure, i.e. the
length in the case n = 2, or area for n = 3.
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The co-area formula in its geometric form says that the total variation
of a function equals the integral over the (n − 1)-dimensional area of
the boundaries of all its lower level sets. More precisely,

Theorem (co-area formula)

Let u ∈ BV(Ω). Then

J(u) =

∫ ∞
−∞

J(1{u≤t}) dt
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Definition
The epigraph epi(f ) of a functional f : V → R ∪ {∞} is the set “above
the graph”, i.e.

epi(f ) := {(x , µ) : x ∈ V and µ ≥ f (x)}.

epi(f )

f

Vdom(f )

R
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We choose the geometric definition of a convex function here
because it is more intuitive, the usual algebraic property is a simple
consequence.

Definition

• A functional f : V → R ∪ {∞} is called proper if f 6=∞, or
equivalently, the epigraph is non-empty.

• A functional f : V → R∪ {∞} is called convex if epi(f ) is a convex
set.

• The set of all proper and convex functionals on V is denoted
conv(V).

The only non-proper function is the constant function f =∞. We
exclude it right away, otherwise some theorems become cumbersome
to formulate. From now on, every functional we write down will be
proper.
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Convex functionals have some very important properties with respect
to optimization.

Proposition

Let f ∈ conv(V). Then
• the set of minimizers argminx∈V f (x) is convex (possibly empty).
• if x̂ is a local minimum of f , then x̂ is in fact a global minimum,

i.e. x̂ ∈ argminx∈V f (x).

Both can be easily deduced from convexity of the epigraph.
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Lower semi-continuity is an important property for convex functionals,
since together with coercivity it guarantees the existence of a
minimizer. It has an intuitive geometric interpretation.

Definition
Let f : V → R ∪ {∞} be a functional. Then f is called closed if epi(f )
is a closed set.

Proposition (closedness and lower semi-continuity)

For a functional f : V → R ∪ {∞}, the following two are equivalent:
• f is closed.
• f is lower semi-continuous, i.e.

f (x) ≤ lim inf
xn→x

f (xn)

for any sequence (xn) which converges to x .

29
∫



Convex analysis
∫ x
0 Convex functionals

∫ x
0 D. Cremers, B. Goldlücke, T. Pock
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Definition
Let f : V → R ∪ {∞} be a functional. Then f is called coercive if it is
“unbounded at infinity”. Precisely, for any sequence (xn) ⊂ V with
lim ‖xn‖ =∞, we have lim f (xn) =∞.

Theorem
Let f be a closed, coercive and convex functional on a Banach
space V. Then f attains a minimum on V.

The requirement of coercivity can be weakened, a precise condition
and proof is possible to formulate with the subdifferential calculus. On
Hilbert spaces (and more generally, the so-called “reflexive” Banach
spaces), the requirements of “closed and convex” can be replaced by
“weakly lower semi-continuous”. See [Rockafellar] for details.
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• The function x 7→ exp(x) is convex, lower semi-continuous but
not coercive on R. The infimum 0 is not attained.

• The function

x 7→

{
∞ if x ≤ 0
x2 if x > 0

is convex, coercive, but not closed on R. The infimum 0 is not
attained.

• The functional of the ROF model is closed and convex. It is also
coercive on L2(Ω): from the inverse triangle inequality,

|‖u‖2 − ‖f‖2| ≤ ‖u − f‖2 .

Thus, if ‖un‖2 →∞, then

E(un) ≥ ‖un − f‖2 ≥ |‖un‖2 − ‖f‖2| → ∞.

Therefore, there exists a minimizer of ROF for each input
f ∈ L2(Ω).
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Definition
For any subset S ⊂ V of a vector space, the indicator function
δS : V → R ∪∞ is defined as

δS(x) :=

{
∞ if x 6= S,
0 if x ∈ S.

Indicator functions give examples for particularly simple convex
functions, as they have only two different function values.

Proposition (convexity of indicator functions)

S is a convex set if and only if δS is a convex function.

The proposition is easy to prove (exercise). Note that by convention,
r <∞ for all r ∈ R.
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Suppose you want to find the minimizer of a convex
functional f : C → R defined on a convex set C ⊂ V. You can always
exchange that with an unconstrained problem which has the same
minimizer: introduce an extended function

f̃ : V → R, f̃ (x) :=

{
f (x) if x ∈ C
∞ otherwise.

Then
argmin

x∈C
f (x) = argmin

x∈V
f̃ (x),

and f̃ is convex.

Similarly, if f : V → R is defined on the whole space V, then

argmin
x∈C

f (x) = argmin
x∈V

[f (x) + δC(x)] ,

and the function on the right hand side is convex.
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Note: If you do not know what the dual space V∗ of a vector space is,
then you can substitute V - we work the Hilbert space L2(Ω), so they
are the same.

Definition
Let ϕ ∈ V∗ and c ∈ R, then an affine function on V is given by

hϕ,c : v 7→ 〈x , ϕ〉 − c.

We call ϕ the slope and c the intercept of hϕ,c .

V

R

[ϕ −1]

hϕ,c

−c

The conjugate functional of a convex functional f gives a dual
description of f in terms of affine functions which minorize it.
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We would like to find the largest affine function below f . For this,
consider for each x ∈ V the affine function which passes through
(x , f (x)):

hϕ,c(x) = f (x)⇔ 〈x , ϕ〉 − c = f (x)⇔ c = 〈x , ϕ〉 − f (x).

epi(f )

V

f

x

f (x)

hϕ,〈x ,ϕ〉−f (x)

−(〈x , ϕ〉 − f (x))

To get the largest affine function below f , we have to pass to the
supremum. The intercept of this function is called the conjugate
functional of f .
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Conjugate functionals
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Definition
Let f ∈ conv(V). Then the conjugate functional f ∗ : V∗ → R ∪ {∞} is
defined as

f ∗(ϕ) := sup
x∈V

[〈x , ϕ〉 − f (x)] .

epi(f )

f

V

R

[ϕ −1]

−f ∗(ϕ)

hϕ,f∗(ϕ)
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The epigraph of f ∗ consists of all pairs (ϕ, c) such that hϕ,c lies below
f . It almost completely characterizes f . The reason for the “almost” is
that you can recover f only up to closure.

Theorem
Let f ∈ conv(V) be closed and V be reflexive, i.e. V∗∗ = V. Then
f ∗∗ = f .

For the proof, note that

f (x) = sup
hϕ,c≤f

hϕ,c(x) = sup
(ϕ,c)∈epi(f∗)

hϕ,c(x)

= sup
ϕ∈V∗

[〈x , ϕ〉 − f ∗(ϕ)] = f ∗∗(x).

The first equality is intuitive, but surprisingly difficult to show - it
ultimately relies on the theorem of Hahn-Banach.
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Definition

• Let f ∈ conv(V). A vector ϕ ∈ V∗ is called a subgradient of f at
x ∈ V if

f (y) ≥ f (x) + 〈y − x , ϕ〉 for all y ∈ V.

• The set of all subgradients of f at x is called the subdifferential
∂f (x).

Geometrically speaking, ϕ is a subgradient if the graph of the affine
function

h(y) = f (x) + 〈y − x , ϕ〉

lies below the epigraph of f . Note that also h(x) = f (x), so it
“touches” the epigraph.
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Example: the subdifferential of f : x 7→ |x | in 0 is

∂f (0) = [−1,1].
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The subdifferential is a generalization of the Fréchet derivative (or the
gradient in finite dimension), in the following sense.

Theorem (subdifferential and Fréchet derivative

Let f ∈ conv(V) be Fréchet differentiable at x ∈ V. Then

∂f (x) = {df (x)}.

The proof of the theorem is surprisingly involved - it requires to relate
the subdifferential to one-sided directional derivatives. We will not
explore these relationships in this lecture.
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epi(f )

f

V

R

−f ∗(ϕ)

hϕ,f∗(ϕ)

x

ϕ is a subgradient at x if and only if the line hϕ,f∗(ϕ) touches the
epigraph at x . In formulas,

ϕ ∈ ∂f (x)

⇔ hϕ,f∗(ϕ)(y) = f (x) + 〈y − x , ϕ〉
⇔ f ∗(ϕ) = 〈x , ϕ〉 − f (x)
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The previously seen relationship between subgradients and
conjugate functional can be summarized in the following theorem.

Theorem
Let f ∈ conv(V) and x ∈ V. Then the following conditions on a vector
ϕ ∈ V∗ are equivalent:

• ϕ ∈ ∂f (x).
• x = argmaxy∈V [〈y , ϕ〉 − f (y)] .

• f (x) + f ∗(ϕ) = 〈x , ϕ〉.
If furthermore, f is closed, then more conditions can be added to this
list:

• x ∈ ∂f ∗(ϕ).
• ϕ = argmaxψ∈V∗ [〈x , ψ〉 − f ∗(ψ)] .
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The equivalences are easy to see.

• Rewriting the subgradient definition, one sees that ϕ ∈ ∂f (x)
means

〈x , ϕ〉 − f (x) ≥ 〈y , ϕ〉 − f (y) for all y ∈ V.

This implies the first equivalence.
• We have seen the second one on the slide before.
• If f is closed, then f ∗∗ = f , thus we get

f ∗∗(x) + f ∗(ϕ) = 〈x , ϕ〉 .

This is equivalent to the last two conditions using the same
arguments as above on the conjugate functional.
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As a corollary of the previous theorem, we obtain a generalized
variational principle for convex functionals. It is a necessary and
sufficient condition for the (global) extremum.

Corollary (variational principle for convex functionals)

Let f ∈ conv(V). Then x̂ is a global minimum of f if and only if

0 ∈ ∂f (x̂).

Furthermore, if f is closed, then x̂ is a global minimum if and only if

x̂ ∈ ∂f ∗(0),

i.e. minimizing a functional is the same as computing the
subdifferential of the conjugate functional at 0.

To see this, just set ϕ = 0 in the previous theorem.
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For the remainder of the lecture, we will assume that the underlying
space is a Hilbert space H, for example L2(Ω).

Theorem (geometric Moreau)

Let f be convex and closed on the Hilbert space H, which we identify
with its dual. Then for every z ∈ H there is a unique decomposition

z = x̂ + ϕ with ϕ ∈ ∂f (x̂),

and the unique x̂ in this decomposition can be computed with the
proximation

proxf (z) := argmin
x∈H

{
1
2
‖x − z‖2

H + f (x)

}
.

Corollary to Theorem 31.5 in Rockafellar, page 339 (of 423). The
actual theorem has somewhat more content, but is very technical and
quite hard to digest. The above is the essential consequence.
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The correctness of the theorem is not too hard to see: if x̂ = proxf (z),
then

x̂ ∈ argmin
x∈H

{
1
2
‖x − z‖2

H + f (x)

}
⇔ 0 ∈ x̂ − z + ∂f (x̂)

⇔ z ∈ x̂ + ∂f (x̂).

Existence and uniqueness of the proximation follows because the
functional is closed, strictly convex and coercive.
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• The map z 7→ (proxf (z), z − proxf (z)) is a continuous map from
H into the graph of ∂f ,

graph(∂f ) := {(x , ϕ) : x ∈ H, ϕ ∈ ∂f (x)} ⊂ H ×H,

with continuous inverse (x , ϕ) 7→ x + ϕ.
• The theorem of Moreau now says that this map is one-to one. In

particular,
H ' graph(∂f ),

i.e. the sets are homeomorphic.
• In particular, graph(∂f ) is always connected.

47
∫



Convex analysis
∫ x
0 Proximation and implicit subgradient descent

∫ x
0 D. Cremers, B. Goldlücke, T. Pock
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Proposition

Let f be closed and convex on the Hilbert space H. Let ẑ be a fixed
point of the proximation operator proxf , i.e.

ẑ = proxf (ẑ).

Then ẑ is a minimizer of f . In particular, it also follows that

ẑ ∈ (I − proxf )
−1(0).

To proof this, just note that because of Moreau’s theorem,

ẑ ∈ proxf (ẑ) + ∂f (ẑ)⇔ 0 ∈ ∂f (ẑ)

if ẑ is a fixed point.
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Let λ > 0, z ∈ H and x = proxλf (z). Then

z ∈ x + ∂λf (x)

⇔ x ∈ z − λ∂f (x).

In particular, we have the following interesting observation:

The proximation operator proxλf computes an implicit subgradient
descent step of step size λ for the functional f .

Implicit here means that the subgradient is not evaluated at the
original, but at the new location. This improves stability of the
descent. Note that if subgradient descent converges, then it
converges to a fixed point ẑ of I − λ∂f , in particular ẑ is a minimizer of
the functional f .
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• Variational calculus deals with functionals on infinite-dimensional
vector spaces.

• Minima are characterized by the variational principle, which leads
to the Euler-Lagrange equation as a condition for a local
minimum.

• The total variation is a powerful regularizer for image processing
problems. For binary functions u, it equals the perimeter of the
set where u = 1.

• Convex optimization deals with finding minima of convex
functionals, which can be non-differentiable.

• The generalization of the variational principle for a convex
functional is the condition that the subgradient at a minimum is
zero.

• Efficient optimization methods rely heavily on the concept of
duality. It allows certain useful transformations of convex
problems, which will be employed in the next chapter.
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