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e Region j (background)

- Region 4 (flower)
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Bi nary Seg mentatio n Variational Methods in Computer Vision

e Region j (background)

- Region 4 (flower)

Find binary labeling u : Q — {0, 1} which minimizes

/|Vu|2 dx +/c1 -udx.
Q Q

length of interface ¥ assignment cost

c¢1(x) = cost of assigning “1” to the point x € Q.
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e Region j (background)

- Region 4 (flower)

Find binary labeling u : Q — {0, 1} which minimizes

/|Vu|2 dx +/c1 -udx.
Q Q

length of interface ¥ assignment cost

c¢1(x) = cost of assigning “1” to the point x € Q.

Can be minimized globally (Chan, Esedoglu and Nikolova 2006),
as shown in an earlier chapter of the tutorial.
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First goal in this chapter: introduce total variation for
vector-valued functions which has a similar geometric
interpretation, and can be used to define a regularizer for

multi-label problems.
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For a greyscale image u : Q — R on a domain Q c R™, the scalar
total variation (TV) is defined as

TV(u) :/ |Vul, dx = sup {/ udiv(§) dx}7
Q geCi(Q.E(m) L/Q
—_————

primal and

dual formulation

where E(m) is the unit ball in R™.

Requirements for the generalizationto u: Q@ — R":
e Definitions coincide for n = 1

e Dual formulation available, so that it is defined for
non-differentiable functions

e Convex, closed = efficient minimization algorithms available

e Important invariances and other properties of scalar TV still
satisfied

Comparisons: Goldlicke and Cremers, CVPR 2010
and Goldliicke, Strekalovskiy and Cremers, 2011 (under review)
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SapirO’S general approach: image manifOId Variational Methods in Computer Vision

o The metric tensor of the image
manifold u(Q) is given by

(gv) = (Du)"Du.
——

mxm

o The Eigenvector corresponding
to the largest Eigenvalue )\ gives
the direction of the vectorial edge.

e n=1: Equal to direction of the
gradient Vu, which is always
orthogonal to the level lines.

Leads to familiy of possible definitions for the vectorial TV in the
case m = 2, which is of the form

TVer(u) = /z o, An)ds,

where ¢ is a suitable scalar-valued function (Sapiro and Ringach,
1996).
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Variant Primal Dual

n
n sup /u-div(g-) dx
TVs(u) /Q Vul, dx (e, &)exs{; a
i=1

with Ks = C}(Q,E(m) x - - x E(m))

..... i=1

n
sup /u-div &) dx
Ve [ IDu(ledx e sn)eKF{Z 2 )
with Kr = C1(, E(n - m))

sup /u,dlvg dx
TVJ(U) /Q \/xdx (&1,.--.€n)EK {; )

with K; = C1(Q, co (E(m) ® E(n)))

Comparison: Goldlicke and Cremers, CVPR 2010
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FrObeniUS TV Variational Methods in Computer Vision

For this tutorial chapter, we choose the Frobenius TV as the vectorial
total variation. The primal definition for differentiable u is

/QnDu(x)anx—/Qde

:/ VA Apdx.
Q

The latter equality can be checked by substituting the SVD of Du.
This corresponds to the dual definition

n
sup /u-div(g-) dx
(51,..4,sn)eKF{Z o :

i=1
with Ke = CL(Q,E(n - m)).
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Analytic pI‘OpeI‘tieS Variational Methods in Computer Vision

The analytic properties can be verified directly from the definition, as
in the scalar case.

Proposition

e TVE is a semi-norm, in particular it is convex.
o TVE is lower semi-continuous (closed).
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Variational Methods in Computer Vision

TVE has a geometric property similar to the scalar TV with regard to
curve length. It allows to construct very general regularizers for
multilabel segmentation problems.

Theorem
Let Sc Qand S:= Q\ S. Furthermore, let a, b € R. Then

TVr(als+b1g) = |a— b|,Per(S).

Note that this is a generalization of the scalar case, since
TV(1s) =TV(1-15+0-15) = |1 — 0|, Per(S) = Per(S).

see Lellmann et al., ICCV 2009
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Interpretation as segmentation problem
Q= U..UQN

- Region €y (background)

] Region Q4 (leaves)

- Region €, (flower 1)

Region Q23 (flower 2)
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Interpretation as labeling problem
g:Q—={v,..., I}

- Label ~q (background)
- Label 4 (leaves)

- Label v, (flower 1)

Label 3 (flower 2)
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The regularization penalty is propotional to
the label distance
times the length of the interface.

In this example d(v1,72) - L(X)
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The regularization penalty is propotional to
the label distance
times the length of the interface.

In this example d(v1,72) - L(X)

Euclidean representation of the label distance:
« Each label v is represented by a point a, € RX.
e Label distance d(v, ) = |a, — aul, -
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The regularization penalty is propotional to
the label distance
times the length of the interface.

In this example d(v1,72) - L(X)

Euclidean representation of the label distance:
« Each label v is represented by a point a, € RX.
e Label distance d(v, ) = |a, — aul, -

Except for a special case of the embedding,
the problem is currently unsolvable (discrete case: NP-hard).
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Im portant SpeCiaI cases Variational Methods in Computer Vision

Assume the labels are numbered, I = {1, ..., N}.

Ordered Labels
o Example: depth reconstruction
— 0

a,=y€R e Can be solved globally with functional lifting [Pock,
Schénemann, Graber, Bischof, Cremers "08]

e Continuous version of [Ishikawa '03]
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Im portant SpeCial cases Variational Methods in Computer Vision

Assume the labels are numbered, I = {1, ..., N}.

Ordered Labels
o Example: depth reconstruction
— 0

a,=y€R e Can be solved globally with functional lifting [Pock,
Schénemann, Graber, Bischof, Cremers "08]

e Continuous version of [Ishikawa '03]

-~ Potts model
' o Example: segmentation
¢ No globally optimal solution possible if N > 2
e Continuous version of [Potts '52]

a,=e, eRN



Multilabel segmentation Regularization

Optic F|0W :g(r:i:tizgr:;lwgr:ms in Computer Vision
_ _ Label each pixel in Iy with a
Color input m;ages flow vector in I ¢ R2, choose
Io, hy - Q2 — R representation a, = 1.

Cost function compares pointwise pixel colors in the images:

¢y (X) = 1o (x) = h(x +7)l2
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[ ] [ ] [ ] y£ ([ ] .r

[ ] [ ] T [ ] ([ ] ([ ]

Each red dot requires one indicator function - too many.
Can we exploit the special structure of the label space?
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RedUCtion idea for prOdUCt Iabel Spaces Variational Methods in Computer Vision

Mlo] 3 3 r

20



Product Label Spaces

Reduction idea for product label spaces e e
Mo - r
o o0 o0
o | .
o oo B o
0
3 0 0. 0
5 Do

Indicator functions are products u, = ul; - u2,.
Goldluecke and Cremers, ECCV 2010

20
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The data term is now non-convex:

E(ui,up) =) (¢, u}, - ).

yer

We show in Strekalovskiy, Goldluecke, Cremers, ICCV 2011 that a
convex relaxation of the data term is given by

R(u)= sup {Z (@ uh) + > (ke u§a>}
a2, <cv |y, o
It has the two necessary properties:
e R(u) = E(u) for binary wu.
e If is a binary minimizer of E, then & also minimizes R in the
relaxed space.

21
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# of Pixels # Labels Memory [Mb] Run time [s]
P=Px x Py Ny x No Previous | Proposed (g/p) Previous | Proposed (g/p)
320 x 240 8x8 112 112/102 196 26/140
320 x 240 16 x 16 450 337/168 * 80/488
320 x 240 32 x 32 1800 1124 /330 * 215/1953
320 x 240 50 x 50 4394 2548 / 504 * 950/5188
320 x 240 64 x 64 7200 4050/ 657 - 1100/ 8090
640 x 480 8x8 448 521/413 789 102 / 560
640 x 480 16 x 16 1800 1351/676 * 295/1945
640 x 480 32 x 32 7200 4502 /1327 - 1290/ 7795
640 x 480 50 x 50 17578 10197 /2017 - - /32887
640 x 480 64 x 64 28800 16202 / 2627 - -/ 48583

22
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First image Iy Second image / Result

32 x 32 labels, image resolution 320 x 240, TV regularity
2 minutes runtime, within 5% of global optimum.

23



Product Label Spaces

Multilabel optic flow (2)

First image Iy

Second image /
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4

Result

32 x 32 labels, image resolution 320 x 240, TV regularity
2 minutes runtime, within 5% of global optimum.

24
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Multilabel optic flow (3)

First image f

Second image /4
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Result

32 x 32 labels, image resolution 640 x 480, truncated TV regularity
15 minutes runtime, within 6% of global optimum.

25
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e \ectorial total variation extends the definition of TV from scalar-
to vector-valued functions.

e A common and useful generalization is the Frobenius-TV. In the
primal formulation, you integrate over the Frobenius norm of the
derivative matrix (Jacobian).

e Frobenius-TV is closed and convex, so it can be minimized
efficiently. Furthermore, it has a similar geometric property that
the scalar TV with regards to jump functions.

e Vectorial TV can be used to construct functionals for multilabel
problems with convex relaxations available.

e In the case of product label spaces, the memory and runtime
requirements can be drastically reduced.

See our poster on Thursday,
“Tight convex relaxations for vector-valued labeling”,
for continuous label spaces and more general regularizers.

26
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Vectorial Total Variation

Attouch, Buttazzo and Micaille,
“Variational Analysis in Sobolev and BV spaces”,
SIAM 2006.

e Exhaustive introduction to variational methods and convex optimization
in infinite dimensional spaces, as well as the theory of BV functions.

e Mathematically very advanced, requires solid knowledge of functional
analysis.

Goldliicke and Cremers, e
“An Approach to Vectorial Total Variation based on Ge- =3
ometric Measure Theory”,
CVPR 2010.
o Classification and comparison of several extensions of TV to vector
valued function.

e Evaluation of the cases with a dual formulation available.
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VTV and Multilabel Problems

Lellmann, Becker and Schnorr, e
“Convex Optimization for Multi-Class Image Labeling with a g8

Novel Family of Total Variation Based Regularizers”,

ICCV 2009.
e Introduction of a certain convex relaxation for multilabel problems

e VTV to define regularizers with Euclidean representations for the label
distance.

Goldllicke and Cremers,
“Convex Relaxation for Multilabel Problems with Product

Label Spaces”,
ECCV 2010.
e Reduction technique for label spaces with product structure.

e Makes the algorithm feasible for very large problems like optic flow with
thousands of labels.
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